Bound states in the continuum and time evolution of the generalized eigenfunctions

被引:4
作者
Lohr, D. [1 ]
Hernandez, E. [1 ]
Jauregui, A. [2 ]
Mondragon, A. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
[2] Univ Sonora, Dept Fis, Apartado Postal 106, Hermosillo, Sonora, Mexico
关键词
Bound states in the continuum; Darboux transformations; Jordan chain; SUPERSYMMETRIC QUANTUM-MECHANICS; POTENTIALS; BEHAVIOR;
D O I
10.31349/RevMexFis.64.464
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Jost solutions for the scattering problem of a von Neumann-Wigner type potential, constructed by means of a two times iterated and completely degenerated Darboux transformation. We show that for a particular energy the unnormalized Jost solutions coalesce to give rise to a Jordan cycle of rank two. Performing a pole decomposition of the normalized Jost solutions we find the generalized eigenfunctions: one is a normalizable function corresponding to the bound state in the continuum and the other is a bounded, non-normalizable function. We obtain the time evolution of these functions as pseudo-unitary, characteristic of a pseudo-Hermitian system. An explicit calculation of the cross section as a function of the wave number k reveals no sign of the bound state in the continuum.
引用
收藏
页码:464 / 471
页数:8
相关论文
共 28 条
[1]   Non-linear supersymmetry for non-hermitian, non-diagonalizable Hamiltonians: I. General properties [J].
Andrianov, A. A. ;
Cannata, F. ;
Sokolov, A. V. .
NUCLEAR PHYSICS B, 2007, 773 (03) :107-136
[2]   Resolutions of Identity for Some Non-Hermitian Hamiltonians. I. Exceptional Point in Continuous Spectrum [J].
Andrianov, Alexander A. ;
Sokolov, Andrey V. .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
[3]   Wronskian differential formula for confluent supersymmetric quantum mechanics [J].
Bermudez, David ;
Fernandez C, David J. ;
Fernandez-Garcia, Nicolas .
PHYSICS LETTERS A, 2012, 376 (05) :692-696
[4]   OBSERVATION OF AN ELECTRONIC BOUND-STATE ABOVE A POTENTIAL WELL [J].
CAPASSO, F ;
SIRTORI, C ;
FAIST, J ;
SIVCO, DL ;
CHU, SNG ;
CHO, AY .
NATURE, 1992, 358 (6387) :565-567
[5]   Observation of Surface States with Algebraic Localization [J].
Corrielli, G. ;
Della Valle, G. ;
Crespi, A. ;
Osellame, R. ;
Longhi, S. .
PHYSICAL REVIEW LETTERS, 2013, 111 (22)
[6]  
Crum M, 1955, Q. J. Math., V6, P121
[7]   PHYSICAL REALIZATION OF BOUND-STATES IN THE CONTINUUM [J].
FRIEDRICH, H ;
WINTGEN, D .
PHYSICAL REVIEW A, 1985, 31 (06) :3964-3966
[8]   Particular spectral singularity in the continuum energies: a manifestation as resonances [J].
Hernandez, E. ;
Jauregui, A. ;
Lohr, D. ;
Mondragon, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (26)
[9]   Bound states in the continuum [J].
Hsu, Chia Wei ;
Zhen, Bo ;
Stone, A. Douglas ;
Joannopoulos, John D. ;
Soljacic, Marin .
NATURE REVIEWS MATERIALS, 2016, 1 (09)
[10]   Von Neumann-Wigner-type potentials and the wavefunctions' asymptotics for discrete levels in continuum [J].
Khelashvili, A ;
Kiknadze, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (12) :3209-3212