共 32 条
Non-linear process convolutions for multi-output Gaussian processes
被引:0
|作者:
Alvarez, Mauricio A.
[1
]
Ward, Wil O. C.
[1
]
Guarnizo, Cristian
[2
]
机构:
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
来源:
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89
|
2019年
/
89卷
基金:
英国工程与自然科学研究理事会;
关键词:
MODELS;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文