Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
来源
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89 | 2019年 / 89卷
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 32 条
  • [11] Adaptive Soft Sensor Development for Multi-Output Industrial Processes Based on selective Ensemble Learning
    Shao, Weiming
    Chen, Sheng
    Harris, Chris J.
    IEEE ACCESS, 2018, 6 : 55628 - 55642
  • [12] Synergy of Sentinel-1 and Sentinel-2 Time Series for Cloud-Free Vegetation Water Content Mapping with Multi-Output Gaussian Processes
    Caballero, Gabriel
    Pezzola, Alejandro
    Winschel, Cristina
    Angonova, Paolo Sanchez
    Casella, Alejandra
    Orden, Luciano
    Salinero-Delgado, Matias
    Reyes-Munoz, Pablo
    Berger, Katja
    Delegido, Jesus
    Verrelst, Jochem
    REMOTE SENSING, 2023, 15 (07)
  • [13] Credit, output and financial stress: A non-linear LVSTAR application to Brazil
    Neves, Jose Pedro Bastos
    Semmler, Willi
    METROECONOMICA, 2022, 73 (03) : 900 - 923
  • [14] Mean-field limits for non-linear Hawkes processes with excitation and inhibition
    Pfaffelhuber, P.
    Rotter, S.
    Stiefel, J.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 153 : 57 - 78
  • [15] Measuring technical efficiency for multi-input multi-output production processes through OneClass Support Vector Machines: a finite-sample study
    Moragues, Raul
    Aparicio, Juan
    Esteve, Miriam
    OPERATIONAL RESEARCH, 2023, 23 (03)
  • [16] Retentive capacity of power output and linear versus non-linear mapping of power loss in the isotonic muscular endurance test
    Xu, Hong-qi
    Xue, Yong-tai
    Zhou, Zi-jian
    Koh, Koon Teck
    Xu, Xin
    Shi, Ji-peng
    Zhang, Shou-wei
    Zhang, Xin
    Cai, Jing
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [17] Mathematical Modeling Suggests That Periodontitis Behaves as a Non-Linear Chaotic Dynamical Process
    Papantonopoulos, G.
    Takahashi, K.
    Bountis, T.
    Loos, B. G.
    JOURNAL OF PERIODONTOLOGY, 2013, 84 (10) : E29 - E39
  • [18] Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels
    Zenteno, Efrain
    Piazza, Roberto
    Shankar, M. R. Bhavani
    Ronnow, Daniel
    Ottersten, Bjoern
    IET COMMUNICATIONS, 2015, 9 (16) : 2053 - 2059
  • [19] A non-linear programming approach to maintenance budgeting for multi-component systems
    Ferreira, R. S.
    Barroso, L. A.
    Feinstein, C. D.
    Borges, C. L. T.
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [20] Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes
    Galtier, Mathieu N.
    Marini, Camille
    Wainrib, Gilles
    Jaeger, Herbert
    NEURAL NETWORKS, 2014, 56 : 10 - 21