Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
来源
22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89 | 2019年 / 89卷
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 32 条
  • [1] Federated Multi-Output Gaussian Processes
    Chung, Seokhyun
    Al Kontar, Raed
    TECHNOMETRICS, 2024, 66 (01) : 90 - 103
  • [2] Heterogeneous Multi-output Gaussian Process Prediction
    Moreno-Munoz, Pablo
    Artes-Rodriguez, Antonio
    Alvarez, Mauricio A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [3] Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation
    Rodrigues, Filipe
    Henrickson, Kristian
    Pereira, Francisco C.
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (02) : 594 - 603
  • [4] Variational Dependent Multi-output Gaussian Process Dynamical Systems
    Zhao, Jing
    Sun, Shiliang
    DISCOVERY SCIENCE, DS 2014, 2014, 8777 : 350 - 361
  • [5] Variational Dependent Multi-output Gaussian Process Dynamical Systems
    Zhao, Jing
    Sun, Shiliang
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17 : 1 - 36
  • [6] Non-parametric dynamic system identification of ships using multi-output Gaussian Processes
    Ramire, Wilmer Ariza
    Leong, Zhi Quan
    Hung Nguyen
    Jayasinghe, Shantha Gamini
    OCEAN ENGINEERING, 2018, 166 : 26 - 36
  • [7] Sparse multi-output Gaussian processes for online medical time series prediction
    Cheng, Li-Fang
    Dumitrascu, Bianca
    Darnell, Gregory
    Chivers, Corey
    Draugelis, Michael
    Li, Kai
    Engelhardt, Barbara E.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [8] Multi-Output Gaussian Processes for Inverse Uncertainty Quantification in Neutron Noise Analysis
    Lartaud, Paul
    Humbert, Philippe
    Garnier, Josselin
    NUCLEAR SCIENCE AND ENGINEERING, 2023, 197 (08) : 1928 - 1951
  • [9] Estimation and monitoring of key performance indicators of manufacturing systems using the multi-output Gaussian process
    Kontar, Raed
    Zhou, Shiyu
    Horst, John
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (08) : 2304 - 2319
  • [10] NON-PARAMETRIC ANALYSIS OF MULTI-OUTPUT PRODUCTION WITH JOINT INPUTS
    Cherchye, Laurens
    Demuynck, Thomas
    De Rock, Bram
    De Witte, Kristof
    ECONOMIC JOURNAL, 2014, 124 (577) : 735 - 775