Non-linear process convolutions for multi-output Gaussian processes

被引:0
|
作者
Alvarez, Mauricio A. [1 ]
Ward, Wil O. C. [1 ]
Guarnizo, Cristian [2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield, S Yorkshire, England
[2] Univ Tecnol Pereira, Fac Engn, Pereira, Colombia
基金
英国工程与自然科学研究理事会;
关键词
MODELS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a non-linear version of the process convolution formalism for building covariance functions for multi-output Gaussian processes. The non-linearity is introduced via Volterra series, one series per each output. We provide closed-form expressions for the mean function and the covariance function of the approximated Gaussian process at the output of the Volterra series. The mean function and covariance function for the joint Gaussian process are derived using formulae for the product moments of Gaussian variables. We compare the performance of the non-linear model against the classical process convolution approach in one synthetic dataset and two real datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Collaborative Multi-output Gaussian Processes
    Nguyen, Trung V.
    Bonilla, Edwin V.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2014, : 643 - 652
  • [2] Federated Multi-Output Gaussian Processes
    Chung, Seokhyun
    Al Kontar, Raed
    TECHNOMETRICS, 2024, 66 (01) : 90 - 103
  • [3] Multi-output Infinite Horizon Gaussian Processes
    Lim, Jaehyun
    Park, Jehyun
    Nah, Sungjae
    Choi, Jongeun
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1542 - 1549
  • [4] Remarks on multi-output Gaussian process regression
    Liu, Haitao
    Cai, Jianfei
    Ong, Yew-Soon
    KNOWLEDGE-BASED SYSTEMS, 2018, 144 : 102 - 121
  • [5] Heterogeneous Multi-output Gaussian Process Prediction
    Moreno-Munoz, Pablo
    Artes-Rodriguez, Antonio
    Alvarez, Mauricio A.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] MOGPTK: The multi-output Gaussian process toolkit
    de Wolff, Taco
    Cuevas, Alejandro
    Tobar, Felipe
    NEUROCOMPUTING, 2021, 424 : 49 - 53
  • [7] Robust non-linear control and tracking design for multi-input multi-output non-linear perturbed plants
    Deng, M.
    Bi, S.
    Inoue, A.
    IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (09): : 1237 - 1248
  • [8] Scalable Exact Inference in Multi-Output Gaussian Processes
    Bruinsma, Wessel P.
    Perim, Eric
    Tebbutt, Will
    Hosking, J. Scott
    Solin, Arno
    Turner, Richard E.
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [9] Spectral Mixture Kernels for Multi-Output Gaussian Processes
    Parra, Gabriel
    Tobar, Felipe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [10] Safe Active Learning for Multi-Output Gaussian Processes
    Li, Cen-You
    Rakitsch, Barbara
    Zimmer, Christoph
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151