Perturbation methods and the Melnikov functions for slowly varying oscillators

被引:6
作者
Lakrad, F [1 ]
Charafi, MM [1 ]
机构
[1] Polytech Inst, Casablanca, Morocco
关键词
D O I
10.1016/j.chaos.2004.11.041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new approach to obtaining the Melnikov function for homoclinic orbits in slowly varying oscillators is proposed. The present method applies the Lindstedt-Poincare method to determine an approximation of homoclinic solutions. It is shown that the resultant Melnikov condition is the same as that obtained in the usual way involving distance functions in three dimensions by Wiggins and Holmes [Homoclinic orbits in slowly varying oscillators. SIAM J Math Anal 1987;18(3):612]. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:675 / 680
页数:6
相关论文
共 10 条
[1]  
BEGLUND N, 1998, THESIS I PHYS THEORI
[2]   Homoclinic connections in strongly self-excited nonlinear oscillators: The Melnikov function and the elliptic Lindstedt-Poincare method [J].
Belhaq, M ;
Fiedler, B ;
Lakrad, F .
NONLINEAR DYNAMICS, 2000, 23 (01) :67-86
[3]   A fast-manifold approach to Melnikov functions for slowly varying oscillators [J].
Chen, SL ;
Shaw, SW .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (08) :1575-1578
[4]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[5]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42
[6]   Effects of a low frequency parametric excitation [J].
Lakrad, F ;
Schiehlen, W .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1149-1164
[7]  
Nayfeh A. H., 1979, Perturbation Methods
[9]   HOMOCLINIC ORBITS IN SLOWLY VARYING OSCILLATORS [J].
WIGGINS, S ;
HOLMES, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :612-629
[10]  
WIGGINS S, 1988, GLOBAL BIFURCATIONS