THE LAPLACIAN SPECTRAL RADIUS OF GRAPHS

被引:4
作者
Li, Jianxi [1 ]
Shiu, Wai Chee [2 ]
Chang, An [3 ]
机构
[1] Zhangzhou Normal Univ, Dept Math & Informat Sci, Zhangzhou, Fujian, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Fuzhou Univ, Ctr Discrete Math, Software Coll, Fuzhou 350002, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
graph; Laplacian spectral radius; bounds; NONREGULAR GRAPHS; LARGEST EIGENVALUE; BOUNDS;
D O I
10.1007/s10587-010-0052-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Laplacian spectral radius of a graph is the largest eigenvalue of the ass ociated Laplacian matrix. In this paper, we improve Shi's upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.
引用
收藏
页码:835 / 847
页数:13
相关论文
共 12 条
[1]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[2]  
Cioaba SM, 2007, ELECTRON J COMB, V14
[3]   INTERLACING EIGENVALUES AND GRAPHS [J].
HAEMERS, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 :593-616
[4]   On the largest eigenvalue of non-regular graphs [J].
Liu, Bolian ;
Shen, Jian ;
Wang, Xinmao .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (06) :1010-1018
[5]  
Merris R., 1994, LINEAR ALGEBRA APPL, V197-198, P143, DOI DOI 10.1016/0024-3795(94)90486-3
[6]  
Mohar B, 1997, NATO ADV SCI I C-MAT, V497, P225
[7]   MAXIMA FOR GRAPHS AND A NEW PROOF OF A THEOREM OF TURAN [J].
MOTZKIN, TS ;
STRAUS, EG .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (04) :533-&
[8]   Bounds on graph eigenvalues II [J].
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) :183-189
[9]   Bounds on the (Laplacian) spectral radius of graphs [J].
Shi, Lingsheng .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 422 (2-3) :755-770
[10]   The largest eigenvalue of nonregular graphs [J].
Stevanovic, D .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 91 (01) :143-146