Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications

被引:10
|
作者
Xu, Zhanyan [1 ]
Omar, Abdalla M. [1 ]
Bartolo, Paulo [1 ]
机构
[1] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M13 9PL, England
基金
英国工程与自然科学研究理事会;
关键词
additive manufacturing; bone scaffolds; finite element analysis; mechanical analysis;
D O I
10.3390/ma14133546
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ideal bone scaffolds for tissue engineering should be highly porous allowing cell attachment, spreading, and differentiation and presenting appropriate biomechanical properties. These antagonistic characteristics usually require extensive experimental work to achieve optimised balanced properties. This paper presents a simulation approach to determine the mechanical behaviour of bone scaffolds allowing the compressive modulus and the deformation mechanisms to be predicted. Polycaprolactone scaffolds with regular square pores and different porosities were considered. Scaffolds were also printed using an extrusion-based additive manufacturing and assessed under compressive loads. Similar designs were used for both simulation and fabrication steps. A good correlation between numerical and experimental results was obtained, highlighting the suitability of the simulation tool for the mechanical design of 3D-printed bone scaffolds.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Analysis of 3D Printed Diopside Scaffolds Properties for Tissue Engineering
    Liu, Tingting
    Deng, Youwen
    Gao, Chengde
    Feng, Pei
    Shuai, Cijun
    Peng, Shuping
    MATERIALS SCIENCE-MEDZIAGOTYRA, 2015, 21 (04): : 590 - 594
  • [32] Numerical and experimental investigation of a 3D-printed PCU patient-specific cranial implant
    Pisaneschi, Gregorio
    Mele, Mattia
    Zucchelli, Andrea
    Fiorini, Maurizio
    Campana, Giampaolo
    Marcelli, Emanuela
    Tarsitano, Achille
    Lucchi, Elisabetta
    Cercenelli, Laura
    PROGRESS IN ADDITIVE MANUFACTURING, 2024, 9 (02) : 299 - 313
  • [33] Numerical and experimental investigation of a 3D-printed PCU patient-specific cranial implant
    Gregorio Pisaneschi
    Mattia Mele
    Andrea Zucchelli
    Maurizio Fiorini
    Giampaolo Campana
    Emanuela Marcelli
    Achille Tarsitano
    Elisabetta Lucchi
    Laura Cercenelli
    Progress in Additive Manufacturing, 2024, 9 : 299 - 313
  • [34] Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration
    Zohoor, Sara
    Abolfathi, Nabiollah
    Solati-Hashjin, Mehran
    IRANIAN POLYMER JOURNAL, 2023, 32 (10) : 1209 - 1227
  • [35] Design exploration of 3D-printed triply periodic minimal surface scaffolds for bone implants
    Poltue, Teerapong
    Karuna, Chatchai
    Khrueaduangkham, Suppakrit
    Seehanam, Saran
    Promoppatum, Patcharapit
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 211
  • [36] 3D-printed porous titanium scaffolds incorporating niobium for high bone regeneration capacity
    Liang, Hang
    Zhao, Danlei
    Feng, Xiaobo
    Ma, Liang
    Deng, Xiangyu
    Han, Changjun
    Wei, Qingsong
    Yang, Cao
    MATERIALS & DESIGN, 2020, 194
  • [37] Accelerated degradation mechanism and mechanical behavior of 3D-printed PLA scaffolds for bone regeneration
    Sara Zohoor
    Nabiollah Abolfathi
    Mehran Solati-Hashjin
    Iranian Polymer Journal, 2023, 32 : 1209 - 1227
  • [38] Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration
    Iturriaga, Leire
    Van Gordon, Kyle D.
    Larranaga-Jaurrieta, Garazi
    Camarero-Espinosa, Sandra
    ADVANCED NANOBIOMED RESEARCH, 2021, 1 (12):
  • [39] In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering
    e Silva, Edney P.
    Huang, Boyang
    Helaehil, Julia, V
    Nalesso, Paulo R. L.
    Bagne, Leonardo
    de Oliveira, Maraiara A.
    Albiazetti, Gabriela C. C.
    Aldalbahi, Ali
    El-Newehy, Mohamed
    Santamaria-Jr, Milton
    Mendonca, Fernanda A. S.
    Bartolo, Paulo
    Caetano, Guilherme F.
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) : 190 - 202
  • [40] In vivo study of conductive 3D printed PCL/MWCNTs scaffolds with electrical stimulation for bone tissue engineering
    Edney P. e Silva
    Boyang Huang
    Júlia V. Helaehil
    Paulo R. L. Nalesso
    Leonardo Bagne
    Maraiara A. de Oliveira
    Gabriela C. C. Albiazetti
    Ali Aldalbahi
    Mohamed El-Newehy
    Milton Santamaria-Jr
    Fernanda A. S. Mendonça
    Paulo Bártolo
    Guilherme F. Caetano
    Bio-Design and Manufacturing, 2021, 4 : 190 - 202