Clinical Characterization and Prediction of Clinical Severity of SARS-CoV-2 Infection Among US Adults Using Data From the US National COVID Cohort Collaborative

被引:172
作者
Bennett, Tellen D. [1 ]
Moffitt, Richard A. [2 ]
Hajagos, Janos G. [3 ]
Amor, Benjamin [4 ]
Anand, Adit [3 ]
Bissell, Mark M. [4 ]
Bradwell, Katie Rebecca [4 ]
Bremer, Carolyn [3 ]
Byrd, James Brian [5 ]
Denham, Alina [6 ]
DeWitt, Peter E. [1 ]
Gabriel, Davera [7 ]
Garibaldi, Brian T. [8 ]
Girvin, Andrew T. [4 ]
Guinney, Justin [9 ]
Hill, Elaine L. [6 ]
Hong, Stephanie S. [8 ]
Jimenez, Hunter [3 ]
Kavuluru, Ramakanth [10 ]
Kostka, Kristin [11 ,12 ]
Lehmann, Harold P. [13 ]
Levitt, Eli [14 ]
Mallipattu, Sandeep K. [3 ]
Manna, Amin [4 ]
McMurry, Julie A. [15 ]
Morris, Michele [16 ]
Muschelli, John [17 ]
Neumann, Andrew J. [15 ]
Palchuk, Matvey B. [18 ]
Pfaff, Emily R. [19 ]
Qian, Zhenglong [2 ]
Qureshi, Nabeel [4 ]
Russell, Seth [1 ]
Spratt, Heidi [20 ]
Walden, Anita [9 ,21 ]
Williams, Andrew E. [22 ]
Wooldridge, Jacob T. [3 ]
Yoo, Yun Jae [3 ]
Zhang, Xiaohan Tanner [8 ]
Zhu, Richard L. [8 ]
Austin, Christopher P. [23 ]
Saltz, Joel H. [2 ]
Gersing, Ken R. [23 ]
Haendel, Melissa A. [18 ,24 ]
Chute, Christopher G. [8 ,25 ,26 ]
机构
[1] Univ Colorado, Sect Informat & Data Sci, Dept Pediat, Sch Med, 13199 E Montview Blvd,Ste 300, Aurora, CO 80045 USA
[2] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY USA
[3] SUNY Stony Brook, Stony Brook, NY USA
[4] Palantir Technol, Denver, CO USA
[5] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[6] Univ Rochester, Med Ctr, Dept Publ Hlth Sci, Rochester, NY 14642 USA
[7] Johns Hopkins Univ, Sch Med, Inst Clin & Translat Res, Baltimore, MD USA
[8] Johns Hopkins Univ, Sch Med, Dept Med, Baltimore, MD 21205 USA
[9] Sage Bionetworks, Seattle, WA USA
[10] Univ Kentucky, Dept Internal Med, Div Biomed Informat, Lexington, KY USA
[11] RealWorld Solut, IQVIA, Cambridge, MA USA
[12] Observat Hlth Data Sci & Informat, New York, NY USA
[13] Johns Hopkins Univ, Sch Med, Dept Med, Div Hlth Sci Informat, Baltimore, MD 21205 USA
[14] Univ Alabama Birmingham, Dept Orthopaed Surg, Birmingham, AL USA
[15] Oregon State Univ, Translat & Integrat Sci Ctr, Corvallis, OR 97331 USA
[16] Univ Pittsburgh, Dept Biomed Informat, Pittsburgh, PA USA
[17] Johns Hopkins Univ, Dept Biostat, Sch Med, Baltimore, MD 21205 USA
[18] TriNetX, Cambridge, MA USA
[19] Univ N Carolina, North Carolina Translat & Clin Sci Inst, Chapel Hill, NC 27515 USA
[20] Univ Texas Med Branch, Dept Prevent Med & Publ Hlth, Galveston, TX 77555 USA
[21] Oregon Hlth & Sci Univ, Oregon Clin & Translat Res Inst, Portland, OR 97201 USA
[22] Tufts Med Ctr, Clin & Translat Sci Inst, Boston, MA 02111 USA
[23] NIH, Natl Ctr Adv Translat Sci, Bldg 10, Bethesda, MD 20892 USA
[24] Univ Colorado, Ctr Hlth AI, Aurora, CO USA
[25] Johns Hopkins Univ, Dept Hlth Policy & Management, Sch Med, Baltimore, MD 21218 USA
[26] Johns Hopkins Univ, Sch Med, Dept Nursing, Baltimore, MD USA
基金
美国国家卫生研究院;
关键词
D O I
10.1001/jamanetworkopen.2021.16901
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IMPORTANCE The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. OBJECTIVES To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. DESIGN, SETTING, AND PARTICIPANTS In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). MAIN OUTCOMES AND MEASURES Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. RESULTS The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. CONCLUSIONS AND RELEVANCE This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.
引用
收藏
页数:15
相关论文
共 34 条
  • [1] Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19 The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial
    Angus, Derek C.
    Derde, Lennie
    Al-Beidh, Farah
    Annane, Djillali
    Arabi, Yaseen
    Beane, Abigail
    Van Bentum-Puijk, Wilma
    Berry, Lindsay
    Bhimani, Zahra
    Bonten, Marc
    Bradbury, Charlotte
    Brunkhorst, Frank
    Buxton, Meredith
    Buzgau, Adrian
    Cheng, Allen C.
    de Jong, Menno
    Detry, Michelle
    Estcourt, Lise
    Fitzgerald, Mark
    Goossens, Herman
    Green, Cameron
    Haniffa, Rashan
    Higgins, Alisa M.
    Horvat, Christopher
    Hullegie, Sebastiaan J.
    Kruger, Peter
    Lamontagne, Francois
    Lawler, Patrick R.
    Linstrum, Kelsey
    Litton, Edward
    Lorenzi, Elizabeth
    Marshall, John
    McAuley, Daniel
    McGlothin, Anna
    McGuinness, Shay
    McVerry, Bryan
    Montgomery, Stephanie
    Mouncey, Paul
    Murthy, Srinivas
    Nichol, Alistair
    Parke, Rachael
    Parker, Jane
    Rowan, Kathryn
    Sanil, Ashish
    Santos, Marlene
    Saunders, Christina
    Seymour, Christopher
    Turner, Anne
    van de Veerdonk, Frank
    Venkatesh, Balasubramanian
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2020, 324 (13): : 1317 - 1329
  • [2] [Anonymous], 2021, I DEV AWARD PROGRAM
  • [3] ICU and Ventilator Mortality Among Critically III Adults With Coronavirus Disease 2019
    Auld, Sara C.
    Caridi-Scheible, Mark
    Blum, James M.
    Robichaux, Chad
    Kraft, Colleen
    Jacob, Jesse T.
    Jabaley, Craig S.
    Carpenter, David
    Kaplow, Roberta
    Hernandez-Romieu, Alfonso C.
    Adelman, Max W.
    Martin, Greg S.
    Coopersmith, Craig M.
    Murphy, David J.
    [J]. CRITICAL CARE MEDICINE, 2020, 48 (09) : E799 - E804
  • [4] Disparities In Outcomes Among COVID-19 Patients In A Large Health Care System In California
    Azar, Kristen M. J.
    Shen, Zijun
    Romanelli, Robert J.
    Lockhart, Stephen H.
    Smits, Kelly
    Robinson, Sarah
    Brown, Stephanie
    Pressman, Alice R.
    [J]. HEALTH AFFAIRS, 2020, 39 (07) : 1253 - 1262
  • [5] International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium
    Brat, Gabriel A.
    Weber, Griffin M.
    Gehlenborg, Nils
    Avillach, Paul
    Palmer, Nathan P.
    Chiovato, Luca
    Cimino, James
    Waitman, Lemuel R.
    Omenn, Gilbert S.
    Malovini, Alberto
    Moore, Jason H.
    Beaulieu-Jones, Brett K.
    Tibollo, Valentina
    Murphy, Shawn N.
    L'Yi, Sehi
    Keller, Mark S.
    Bellazzi, Riccardo
    Hanauer, David A.
    Serret-Larmande, Arnaud
    Gutierrez-Sacristan, Alba
    Holmes, John J.
    Bell, Douglas S.
    Mandl, Kenneth D.
    Follett, Robert W.
    Klann, Jeffrey G.
    Murad, Douglas A.
    Scudeller, Luigia
    Bucalo, Mauro
    Kirchoff, Katie
    Craig, Jean
    Obeid, Jihad
    Jouhet, Vianney
    Griffier, Romain
    Cossin, Sebastien
    Moal, Bertrand
    Patel, Lav P.
    Bellasi, Antonio
    Prokosch, Hans U.
    Kraska, Detlef
    Sliz, Piotr
    Tan, Amelia L. M.
    Ngiam, Kee Yuan
    Zambelli, Alberto
    Mowery, Danielle L.
    Schiver, Emily
    Devkota, Batsal
    Bradford, Robert L.
    Daniar, Mohamad
    Daniel, Christel
    Benoit, Vincent
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [6] Association between statin use and outcomes in patients with coronavirus disease 2019 (COVID-19): a nationwide cohort study
    Butt, Jawad Haider
    Gerds, Thomas Alexander
    Schou, Morten
    Kragholm, Kristian
    Phelps, Matthew
    Havers-Borgersen, Eva
    Yafasova, Adelina
    Gislason, Gunnar Hilmar
    Torp-Pedersen, Christian
    Kober, Lars
    Fosbol, Emil Loldrup
    [J]. BMJ OPEN, 2020, 10 (12):
  • [7] Clinical determinants for fatality of 44,672 patients with COVID-19
    Deng, Guangtong
    Yin, Mingzhu
    Chen, Xiang
    Zeng, Furong
    [J]. CRITICAL CARE, 2020, 24 (01)
  • [8] Improving Survival of Critical Care Patients With Coronavirus Disease 2019 in England: A National Cohort Study, March to June 2020
    Dennis, John M.
    McGovern, Andrew P.
    Vollmer, Sebastian J.
    Mateen, Bilal A.
    [J]. CRITICAL CARE MEDICINE, 2021, 49 (02) : 209 - 214
  • [9] An interactive web-based dashboard to track COVID-19 in real time
    Dong, Ensheng
    Du, Hongru
    Gardner, Lauren
    [J]. LANCET INFECTIOUS DISEASES, 2020, 20 (05) : 533 - 534
  • [10] Patient Trajectories Among Persons Hospitalized for COVID-19 A Cohort Study
    Garibaldi, Brian T.
    Fiksel, Jacob
    Muschelli, John
    Robinson, Matthew L.
    Rouhizadeh, Masoud
    Perin, Jamie
    Schumock, Grant
    Nagy, Paul
    Gray, Josh H.
    Malapati, Harsha
    Ghobadi-Krueger, Mariam
    Niessen, Timothy M.
    Kim, Bo Soo
    Hill, Peter M.
    Ahmed, M. Shafeeq
    Dobkin, Eric D.
    Blanding, Renee
    Abele, Jennifer
    Woods, Bonnie
    Harkness, Kenneth
    Thiemann, David R.
    Bowring, Mary G.
    Shah, Aalok B.
    Wang, Mei-Cheng
    Bandeen-Roche, Karen
    Rosen, Antony
    Zeger, Scott L.
    Gupta, Amita
    [J]. ANNALS OF INTERNAL MEDICINE, 2021, 174 (01) : 33 - +