Three-dimensional Initial-boundary Value Problem for a Parabolic-hyperbolic Equation With a Degenerate Parabolic Part

被引:0
作者
Sidorov, S. N. [1 ,2 ]
机构
[1] Bashkir State Univ, Sterlitamak Branch, Sterlitamak 453103, Russia
[2] Inst Strateg Studies Republ Bashkortostan, Sterlitamak Branch, Sterlitamak 453103, Russia
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2022年 / 12卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
equation of mixed parabolic-hyperbolic type; three-dimensional initial-boundary value problem; uniqueness; series; small denominators; existence; stability; INVERSE PROBLEMS; INHOMOGENEOUS EQUATION; WELL-POSEDNESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Initial-boundary value problem for a non-homogeneous equation of mixed parabolic-hyperbolic type in three variables with a degenerate parabolic part in a rectangular parallelepiped is studied. A criterion for the uniqueness of a solution is established. The solution is constructed as the sum of an orthogonal series. When justifying the convergence of the series, the problem of small denominators of two natural arguments arises. Estimates on the separation of small denominators from zero with the corresponding asymptotics are established. These estimates made it possible to substantiate the convergence of the constructed series in the class of regular solutions of this equation. The stability of the solution with respect to the boundary function and the right-hand side of the equation is established.
引用
收藏
页码:49 / 67
页数:19
相关论文
共 25 条
[1]   Well-posedness of a mixed type problem for the multidimensional hyperbolic-parabolic equation [J].
Aldashev, S. A. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2020, 24 (03) :574-582
[2]   A criterion for the unique solvability of the spectral Dirichlet problem for a class of multidimensional hyperbolic-parabolic equations [J].
Aldashev, S. A. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2018, 22 (02) :225-235
[3]  
Aldashev S. A., 2019, VESTN SAMARSK U ESTE, V25, P7, DOI [10.18287/2541-7525-2019-25-4-7-13, DOI 10.18287/2541-7525-2019-25-4-7-13]
[4]  
Aldashev S.A., 2017, IZV SARAT UN THAT, V17, P244
[5]  
Bukhshtab A. A., 1966, Number Theory
[6]  
Kapustin NY, 1997, DOKL AKAD NAUK+, V352, P451
[7]  
KAPUSTIN NY, 1987, DIFF EQUAT+, V23, P51
[8]  
Khinchin A. Ya., 1997, Continued Fractions
[9]  
Ladizhenskaya O.A., 1965, Vestnik Leningradsky University. Series: Mathematics. Mechanics. Astronomy, V19, P38
[10]   Initial-Boundary Problem for a Three-Dimensional Inhomogeneous Equation of Parabolic-Hyperbolic Type [J].
Sabitov, K. B. ;
Sidorov, S. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (11) :2257-2268