Characterization of CYP2C19 and CYP2C9 from human liver:: Respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations

被引:127
作者
Lasker, JM
Wester, MR
Aramsombatdee, E
Raucy, JL
机构
[1] CUNY Mt Sinai Sch Med, Dept Biochem, New York, NY 10029 USA
[2] Univ New Mexico, Coll Pharm, Toxicol Program, Albuquerque, NM 87131 USA
[3] Agouron Inst, La Jolla, CA 92037 USA
关键词
CYP2C19; CYP2C9; CYP2C8; tolbutamide; S-mephenytoin; omeprazole; human liver microsomes;
D O I
10.1006/abbi.1998.0615
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Individuals with drug metabolism polymorphisms involving CYP2C enzymes exhibit deficient oxidation of important therapeutic agents, including S-mephenytoin, omeprazole, warfarin, tolbutamide, and nonsteroidal anti-inflammatory drugs. While recombinant CYP2C19 and CYP2C9 proteins expressed in yeast or Escherichia coli have been shown to oxidize these agents, the capacity of the corresponding native P450s isolated from human liver to do so is ill defined. To that end, we purified CYP2C19, CYP2C9, and CYP2C8 from human Liver samples using conventional chromatographic techniques and examined their capacity to oxidize S-mephenytoin, omeprazole, and tolbutamide. Upon reconstitution, CYP2C19 metabolized S-mephenytoin and omeprazole at rates that were 11- and 8-fold higher, respectively, than those of intact liver microsomes, whereas neither CYP2C9 nor CYP2C8 displayed appreciable metabolic activity with these substrates. CYP2C19 also proved an efficient catalyst of tolbutamide metabolism, exhibiting a turnover rate similar to CYP2C9 preparations (2.0-6.4 vs 2.4-4.3 nmol hydroxy-tolbutamide formed/min/nmol P450). The kinetic parameters of CYP2C19-mediated tolbutamide hydroxylation (K-m = 650 mu M, V-max = 3.71 min(-1)) somewhat resembled those of the CYP2C9-catalyzed reaction (K-m = 178-407 mu M, V-max = 2.95-7.08 min(-1)). Polyclonal CYP2C19 antibodies markedly decreased S-mephenytoin 4'-hydroxylation (98% inhibition) and omeprazole 5-hydroxylation (85% inhibition) by human liver microsomes. CYP2C19 antibodies also potently inhibited (>90%) microsomal tolbutamide hydroxylation, which was similar to the inhibition (>85%) observed with antibodies to CYP2C9. Moreover, excellent correlations were found between immunoreactive CYP2C19 content, S-mephenytoin 4'-hydroxylase activity (r = 0.912; P < 0.001), and omeprazole 5-hydroxylase activity (r = 0.906; P < 0.001) in liver samples from 13-17 different subjects. A significant relationship was Likewise observed between microsomal tolbutamide hydroxylation and CYP2C9 content (r = 0.664; P < 0.02) but not with CYP2C19 content (r = 0.393; P = 0.184). Finally, immunoquantitation revealed that in these human liver samples, expression of CYP2C9 (88.5 +/- 36 nmol/mg) was 5-fold higher than that of CYP2C19 (17.8 +/- 14 nmol/mg) and nearly 8-fold higher than that of CYP2C8 (11.5 +/- 12 nmol/mg). Our results, like those obtained with recombinant CYP2C enzymes, indicate that CYP2C19 is a primary determinant of S-mephenytoin 4'-hydroxylation and low-K-m omeprazole 5-hydroxylation in human liver. Despite its tolbutamide hydroxylase activity, the low levels of hepatic CYP2C19 expression (relative to CYP2C9) may preclude an important role for this enzyme in hepatic tolbutamide metabolism and any polymorphisms thereof. (C) 1998 Academic Press.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 54 条
[1]   IDENTIFICATION OF HUMAN LIVER CYTOCHROME-P450 ISOFORMS MEDIATING OMEPRAZOLE METABOLISM [J].
ANDERSSON, T ;
MINERS, JO ;
VERONESE, ME ;
TASSANEEYAKUL, W ;
TASSANEEYAKUL, W ;
MEYER, UA ;
BIRKETT, DJ .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 1993, 36 (06) :521-530
[2]   CLINICAL PHARMACOKINETICS OF SULFONYLUREA HYPOGLYCEMIC DRUGS [J].
BALANT, L .
CLINICAL PHARMACOKINETICS, 1981, 6 (03) :215-241
[3]   EXPRESSION OF A HUMAN-LIVER CYTOCHROME-P-450 PROTEIN WITH TOLBUTAMIDE HYDROXYLASE-ACTIVITY IN SACCHAROMYCES-CEREVISIAE [J].
BRIAN, WR ;
SRIVASTAVA, PK ;
UMBENHAUER, DR ;
LLOYD, RS ;
GUENGERICH, FP .
BIOCHEMISTRY, 1989, 28 (12) :4993-4999
[4]   Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: Comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype [J].
Chang, M ;
Dahl, ML ;
Tybring, G ;
Gotharson, E ;
Bertilsson, L .
PHARMACOGENETICS, 1995, 5 (06) :358-363
[5]   INTERPHENOTYPE DIFFERENCES IN DISPOSITION AND EFFECT ON GASTRIN-LEVELS OF OMEPRAZOLE - SUITABILITY OF OMEPRAZOLE AS A PROBE FOR CYP2C19 [J].
CHANG, M ;
TYBRING, G ;
DAHL, ML ;
GOTHARSON, E ;
SAGAR, M ;
SEENSALU, R ;
BERTILSSON, L .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 1995, 39 (05) :511-518
[6]   HEPATIC-MICROSOMAL TOLBUTAMIDE HYDROXYLATION IN JAPANESE - INVITRO EVIDENCE FOR RAPID AND SLOW METABOLIZERS [J].
CHEN, LS ;
YASUMORI, T ;
YAMAZOE, Y ;
KATO, R .
PHARMACOGENETICS, 1993, 3 (02) :77-85
[7]  
CHIBA K, 1993, J PHARMACOL EXP THER, V266, P52
[8]  
DEMORAIS SMF, 1994, MOL PHARMACOL, V46, P594
[9]  
DEMORAIS SMF, 1994, J BIOL CHEM, V269, P15419
[10]  
FORRESTER AM, 1991, MOL PHARM, V281, P359