Quantum critical behavior of antiferromagnetic itinerant systems with van Hove singularities

被引:7
|
作者
Katanin, A. [1 ,2 ]
机构
[1] Inst Met Phys, Ekaterinburg 620041, Russia
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
ELECTRONIC TOPOLOGICAL TRANSITION; MEAN-FIELD; HUBBARD; ANOMALIES; STATE; MODEL;
D O I
10.1103/PhysRevB.81.165118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interplay of magnetic and superconducting fluctuations in two-dimensional systems with van Hove singularities in the electronic spectrum is considered within the functional renormalization-group (fRG) approach. While the fRG flow has to be stopped at a certain minimal temperature T-RG(min), we study temperature dependence of magnetic and superconducting susceptibilities below T-RG(min) to obtain the crossover temperatures to the regime with strong magnetic and superconducting fluctuations. Near half filling we obtain the largest crossover temperature, corresponding to a regime with strong commensurate magnetic fluctuations, which is replaced by a regime with strong incommensurate fluctuations further away from half filling. With further decreasing density the system undergoes quantum phase transition from incommensurate to paramagnetic phase. Similarly to results of Hertz-Moriya-Millis approach, the temperature dependence of the inverse (in-commensurate) magnetic susceptibility at the magnetic quantum-critical point is found almost linear in temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Evidence for spin-triplet odd-parity superconductivity close to type-II van Hove singularities
    Meng, Zi Yang
    Yang, Fan
    Chen, Kuang-Shing
    Yao, Hong
    Kee, Hae-Young
    PHYSICAL REVIEW B, 2015, 91 (18)
  • [22] Itinerant density wave instabilities at classical and quantum critical points
    Feng, Yejun
    van Wezel, Jasper
    Wang, Jiyang
    Flicker, Felix
    Silevitch, D. M.
    Littlewood, P. B.
    Rosenbaum, T. F.
    NATURE PHYSICS, 2015, 11 (10) : 865 - 871
  • [23] Emergence of a control parameter for the antiferromagnetic quantum critical metal
    Lunts, Peter
    Schlief, Andres
    Lee, Sung-Sik
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [24] On the Superconducting Dome near Antiferromagnetic Quantum Critical Points
    Continentino, Mucio A.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (10)
  • [25] High-Tc Berezinskii-Kosterlitz-Thouless transition in two-dimensional superconducting systems with coupled deep and quasiflat electronic bands with Van Hove singularities
    Paramasivam, Sathish Kumar
    Gangadharan, Shakhil Ponnarassery
    Milosevic, Milorad, V
    Perali, Andrea
    PHYSICAL REVIEW B, 2024, 110 (02)
  • [26] Quantum Critical Point in the Itinerant Ferromagnet Ni1-xRhx
    Huang, C-L
    Hallas, A. M.
    Grube, K.
    Kuntz, S.
    Spiess, B.
    Bayliff, K.
    Besara, T.
    Siegrist, T.
    Cai, Y.
    Beare, J.
    Luke, G. M.
    Morosan, E.
    PHYSICAL REVIEW LETTERS, 2020, 124 (11)
  • [27] Many-body chaos in the antiferromagnetic quantum critical metal
    Lunts, Peter
    Patel, Aavishkar A.
    PHYSICAL REVIEW B, 2019, 100 (23)
  • [28] Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets
    Varma, C. M.
    Zhu, Lijun
    Schroeder, Almut
    PHYSICAL REVIEW B, 2015, 92 (15)
  • [29] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [30] Thermodynamic signatures of an antiferromagnetic quantum critical point inside a superconducting dome
    de Carvalho, Vanuildo S.
    Chubukov, Andrey, V
    Fernandes, Rafael M.
    PHYSICAL REVIEW B, 2020, 102 (04)