Quantum critical behavior of antiferromagnetic itinerant systems with van Hove singularities

被引:7
|
作者
Katanin, A. [1 ,2 ]
机构
[1] Inst Met Phys, Ekaterinburg 620041, Russia
[2] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
ELECTRONIC TOPOLOGICAL TRANSITION; MEAN-FIELD; HUBBARD; ANOMALIES; STATE; MODEL;
D O I
10.1103/PhysRevB.81.165118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interplay of magnetic and superconducting fluctuations in two-dimensional systems with van Hove singularities in the electronic spectrum is considered within the functional renormalization-group (fRG) approach. While the fRG flow has to be stopped at a certain minimal temperature T-RG(min), we study temperature dependence of magnetic and superconducting susceptibilities below T-RG(min) to obtain the crossover temperatures to the regime with strong magnetic and superconducting fluctuations. Near half filling we obtain the largest crossover temperature, corresponding to a regime with strong commensurate magnetic fluctuations, which is replaced by a regime with strong incommensurate fluctuations further away from half filling. With further decreasing density the system undergoes quantum phase transition from incommensurate to paramagnetic phase. Similarly to results of Hertz-Moriya-Millis approach, the temperature dependence of the inverse (in-commensurate) magnetic susceptibility at the magnetic quantum-critical point is found almost linear in temperature.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Itinerant electron metamagnetism for lattices with van Hove singularities near the Fermi level
    Vasilevskiy, F. A.
    Igoshev, P. A.
    Irkhin, V. Yu.
    PHYSICAL REVIEW B, 2025, 111 (10)
  • [2] Van Hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice
    Sala, G.
    Stone, M. B.
    Rai, Binod K.
    May, A. F.
    Laurell, Pontus
    Garlea, V. O.
    Butch, N. P.
    Lumsden, M. D.
    Ehlers, G.
    Pokharel, G.
    Podlesnyak, A.
    Mandrus, D.
    Parker, D. S.
    Okamoto, S.
    Halasz, Gabor B.
    Christianson, A. D.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Pair density wave and loop current promoted by Van Hove singularities in moire systems
    Wu, Zhengzhi
    Wu, Yi-Ming
    Wu, Fengcheng
    PHYSICAL REVIEW B, 2023, 107 (04)
  • [4] Disentangling boson peaks and Van Hove singularities in a model glass
    Wang, Yinqiao
    Hong, Liang
    Wang, Yujie
    Schirmacher, Walter
    Zhang, Jie
    PHYSICAL REVIEW B, 2018, 98 (17)
  • [5] Altermagnetism from coincident Van Hove singularities: application to κ-Cl
    Yu, Yue
    Suh, Han Gyeol
    Roig, Merce
    Agterberg, Daniel F.
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [6] Fermi-surface reconstruction involving two van Hove singularities across the antiferromagnetic transition in BaFe2As2
    Nakashima, Y.
    Ino, A.
    Nagato, S.
    Anzai, H.
    Iwasawa, H.
    Utsumi, Y.
    Sato, H.
    Arita, M.
    Namatame, H.
    Taniguchi, M.
    Oguchi, T.
    Aiura, Y.
    Hase, I.
    Kihou, K.
    Lee, C. H.
    Iyo, A.
    Eisaki, H.
    SOLID STATE COMMUNICATIONS, 2013, 157 : 16 - 20
  • [7] The Kondo-lattice state and non-Fermi-liquid behavior in the presence of Van Hove singularities
    Irkhin, V. Yu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (06)
  • [8] Higher-order Van Hove singularities in kagome topological bands
    Wang, Edrick
    Pullasseri, Lakshmi
    Santos, Luiz H.
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [9] Fermi Condensation Near van Hove Singularities Within the Hubbard Model on the Triangular Lattice
    Yudin, Dmitry
    Hirschmeier, Daniel
    Hafermann, Hartmut
    Eriksson, Olle
    Lichtenstein, Alexander I.
    Katsnelson, Mikhail I.
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [10] Landau quantization near generalized Van Hove singularities: Magnetic breakdown and orbit networks
    Zakharov, V. A.
    Bozkurt, A. Mert
    Akhmerov, A. R.
    Oriekhov, D. O.
    PHYSICAL REVIEW B, 2024, 109 (08)