Hard Carbon Microsphere with Built-In Electron Transport Channels as a High-Performance Anode for Sodium-Ion Batteries

被引:2
|
作者
Zhang, Di [1 ]
Wang, Yizhou [1 ]
Fang, Zhimin [1 ]
He, Yu-Shi [2 ]
Zhang, Weimin [1 ]
Ma, Zi-Feng [2 ]
Kang, Shuwen [3 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[3] Northeast Normal Univ, Nation & Local United Engn Lab Power Batteries, Fac Chem, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
hard carbon; sodium-ion batteries; electron transport channel; wrinkled microsphere; improved performance; NANOFIBERS;
D O I
10.1149/1945-7111/ac71d8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbon is one of the most promising candidate materials as the anode for sodium-ion batteries (SIBs). In this work, we developed an effective strategy to homogenize highly conductive carbon nanotubes (CNTs) into a hard carbon microsphere (e-HC) to construct electron transport channels to improve the performance of hard carbon. The material featured a wrinkled hard carbon microsphere with built-in electron transport channels. Although the optimization made no significant changes in the particle size and the graphitization state for the hard carbon, the electrochemical performance was greatly improved in comparison with the pure hard carbon material without CNTs (HC). The increase in the electric and ionic conductivity was identified. The electrochemical measurements showed that the e-HC electrode delivered a reversible capacity of 335.6 mAh g(-1) at 0.05 mA g(-1), which was higher than that of the HC electrode (304.1 mAh g(-1) at 0.05 mA g(-1)). The as-synthesized e-HC material exhibited a higher rate performance and a better cycle life than the HC material. The correlated mechanism for the enhancement was proposed in this study. The e-HC material can be used as a feasible anode for SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9
  • [32] Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries
    Gaddam, Rohit Ranganathan
    Jiang, Edward
    Amiralian, Nasim
    Annamalai, Pratheep K.
    Martin, Darren J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (05): : 1090 - 1097
  • [33] Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries
    Chen, Fuping
    Di, Yujie
    Su, Qiong
    Xu, Dongming
    Zhang, Yangpu
    Zhou, Shuang
    Liang, Shuquan
    Cao, Xinxin
    Pan, Anqiang
    CARBON ENERGY, 2023, 5 (02)
  • [34] Sucrose-derived hard carbon wrapped with reduced graphene oxide as a high-performance anode for sodium-ion batteries
    Li, Shengyuan
    Yuan, Hong
    Ye, Chuanren
    Wang, Yizhe
    Wang, Long
    Ni, Kun
    Zhu, Yanwu
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (18) : 9816 - 9823
  • [35] Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries
    Fuping Chen
    Yujie Di
    Qiong Su
    Dongming Xu
    Yangpu Zhang
    Shuang Zhou
    Shuquan Liang
    Xinxin Cao
    Anqiang Pan
    Carbon Energy, 2023, 5 (02) : 6 - 17
  • [36] Discarded sulfuric acid paper-derived hard carbon as high-performance anode material for sodium-ion batteries
    Duan, Rui
    Zhang, Xi
    Zheng, Tiejun
    Wang, Yuzuo
    Yu, Xuewen
    Ruan, Dianbo
    Qiao, Zhijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [37] The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
    Tan, Suchong
    Yang, Han
    Zhang, Zhen
    Xu, Xiangyu
    Xu, Yuanyuan
    Zhou, Jian
    Zhou, Xinchi
    Pan, Zhengdao
    Rao, Xingyou
    Gu, Yudong
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    MOLECULES, 2023, 28 (07):
  • [38] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [39] Nanowire of WP as a High-Performance Anode Material for Sodium-Ion Batteries
    Pan, Qi
    Chen, Hui
    Wu, Zhenguo
    Wang, Yuan
    Zhong, Benhe
    Xia, Li
    Wang, Hai-Ying
    Cui, Guanwei
    Guo, Xiaodong
    Sun, Xuping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (04) : 971 - 975
  • [40] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331