Hard Carbon Microsphere with Built-In Electron Transport Channels as a High-Performance Anode for Sodium-Ion Batteries

被引:2
|
作者
Zhang, Di [1 ]
Wang, Yizhou [1 ]
Fang, Zhimin [1 ]
He, Yu-Shi [2 ]
Zhang, Weimin [1 ]
Ma, Zi-Feng [2 ]
Kang, Shuwen [3 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 200093, Peoples R China
[2] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[3] Northeast Normal Univ, Nation & Local United Engn Lab Power Batteries, Fac Chem, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
hard carbon; sodium-ion batteries; electron transport channel; wrinkled microsphere; improved performance; NANOFIBERS;
D O I
10.1149/1945-7111/ac71d8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hard carbon is one of the most promising candidate materials as the anode for sodium-ion batteries (SIBs). In this work, we developed an effective strategy to homogenize highly conductive carbon nanotubes (CNTs) into a hard carbon microsphere (e-HC) to construct electron transport channels to improve the performance of hard carbon. The material featured a wrinkled hard carbon microsphere with built-in electron transport channels. Although the optimization made no significant changes in the particle size and the graphitization state for the hard carbon, the electrochemical performance was greatly improved in comparison with the pure hard carbon material without CNTs (HC). The increase in the electric and ionic conductivity was identified. The electrochemical measurements showed that the e-HC electrode delivered a reversible capacity of 335.6 mAh g(-1) at 0.05 mA g(-1), which was higher than that of the HC electrode (304.1 mAh g(-1) at 0.05 mA g(-1)). The as-synthesized e-HC material exhibited a higher rate performance and a better cycle life than the HC material. The correlated mechanism for the enhancement was proposed in this study. The e-HC material can be used as a feasible anode for SIBs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Cow leather-derived N/O codoped hard carbon as a high-performance anode material for sodium-ion batteries
    Chen, Xiaochuan
    Tong, Lijuan
    He, Jiabo
    Yuan, Ziwei
    Wang, Yaxin
    Li, Xuan
    Li, Manxian
    Wang, Manxi
    Wu, Junxiong
    Chen, Yuming
    Li, Xiaoyan
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [22] Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
    Linyuan Pei
    Hailiang Cao
    Liangtao Yang
    Peizhi Liu
    Min Zhao
    Bingshe Xu
    Junjie Guo
    Ionics, 2020, 26 : 5535 - 5542
  • [23] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [24] Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Jiao, Lifang
    Tao, Zhanliang
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (02) : 214 - 220
  • [25] Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries
    Suo, Liyao
    Zhu, Jiahao
    Shen, Xueyang
    Wang, Yizhou
    Han, Xiao
    Chen, Zhongqiang
    Li, Yi
    Liu, Yurong
    Wang, Dan
    Ma, Yanwen
    CARBON, 2019, 151 : 1 - 9
  • [26] Nanoconfined bimetallic sulfides (CoSn)S heterostructure in carbon microsphere as a high-performance anode for half/full sodium-ion batteries
    Wan, Shuyun
    Cheng, Ming
    Chen, Hongyi
    Zhu, Huijuan
    Liu, Qiming
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 609 : 403 - 413
  • [27] Discarded sulfuric acid paper-derived hard carbon as high-performance anode material for sodium-ion batteries
    Duan, Rui
    Zhang, Xi
    Zheng, Tiejun
    Wang, Yuzuo
    Yu, Xuewen
    Ruan, Dianbo
    Qiao, Zhijun
    JOURNAL OF ENERGY STORAGE, 2024, 100
  • [28] Scalable synthesis of N/S co-doped hard carbon microspheres as a high-performance anode material for sodium-ion batteries
    Zhang, Zifang
    Huang, Bin
    Lai, Tingmin
    Sheng, Ao
    Zhong, Shengkui
    Yang, Jianwen
    Li, Yanwei
    NANOTECHNOLOGY, 2024, 35 (11)
  • [29] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Lingchen Kong
    Yu Li
    Wei Feng
    Transactions of Tianjin University, 2022, 28 : 123 - 131
  • [30] Elimination of hydrogen bonds in cellulose enables high-performance disordered carbon anode in sodium-ion batteries
    Mao, Yixuan
    Yi, Zonglin
    Xie, Lijing
    Dai, Liqin
    Su, Fangyuan
    Wang, Yilin
    Ji, Wenjun
    Wei, Xianxian
    Hui, Gongling
    Chang, Yonggang
    Xie, Wei
    Sun, Guohua
    Jiang, Dong
    Chen, Cheng-Meng
    ENERGY STORAGE MATERIALS, 2024, 73