A Theorem on Existence of Invariant Subspaces for J-binoncontractive Operators

被引:0
|
作者
Azizov, Tomas Ya. [1 ]
Khatskevich, Victor A. [2 ]
机构
[1] Voronezh State Univ, Dept Math, Univ Skaya Pl 1, Voronezh 394006, Russia
[2] ORT Braude Acad Coll, Dept Math, IL-21982 Karmiel, Israel
来源
RECENT ADVANCES IN OPERATOR THEORY IN HILBERT AND KREIN SPACES | 2010年 / 198卷
关键词
Krein space; J-binoncontractive operator; invariant subspace;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a J-space and let V = ((V1)(V21) (V12)(V2)) be the matrix representation of a J-binoncontractive operator V with respect to the canonical decomposition H = H+ circle plus H- of H. The main aim of this paper is to show that the assumption V-12 (V-2 - V21V1-1V12) is an element of G(infinity) implies the existence of a. V-invariant maximal nonnegative subspace. Let us note that (0.1) is a generalization of the well-known M.G. Krein condition V-12 is an element of (sic)(infinity) The set of all operators satisfying (0.1) is described via Potapov-Ginsburg transform.
引用
收藏
页码:41 / +
页数:3
相关论文
共 50 条