Comonotone approximation of periodic functions

被引:5
作者
Dzyubenko, G. A. [1 ]
Pleshakov, M. G. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
2 pi-periodic function; comonotone approximation; trigonometric polynomial; Jackson kernel; Whitney's inequality;
D O I
10.1134/S0001434608010203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that a continuous 2 pi-periodic function f on the real axis R changes its monotonicity at different ordered fixed points yi epsilon(-pi,pi), i = 1,..., 2s, s E epsilon N. In other words, there is a set Y := {yi}(i epsilon z) of points yi = y(i+2s) + 2 pi on R such that, on [y(i,)y(i-1)], f is nondecreasing if i is odd and nonincreasing if i is even. For each n >= N(Y), we construct a trigonometric polynomial P-eta of order <= n changing its monotonicity at the same points y(i) epsilon Y as f and such.
引用
收藏
页码:180 / 189
页数:10
相关论文
共 13 条
  • [11] SHVEDOV AS, 1981, MAT ZAMETKI, V29, P117
  • [12] SHVEDOV AS, 1981, MAT ZAMETKI, V30, P839
  • [13] Whitney H., 1957, J MATH PURE APPL, V36, P67, DOI DOI 10.1007/978-1-4612-2972-8_28