Comonotone approximation of periodic functions

被引:5
作者
Dzyubenko, G. A. [1 ]
Pleshakov, M. G. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Saratov, Russia
关键词
2 pi-periodic function; comonotone approximation; trigonometric polynomial; Jackson kernel; Whitney's inequality;
D O I
10.1134/S0001434608010203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that a continuous 2 pi-periodic function f on the real axis R changes its monotonicity at different ordered fixed points yi epsilon(-pi,pi), i = 1,..., 2s, s E epsilon N. In other words, there is a set Y := {yi}(i epsilon z) of points yi = y(i+2s) + 2 pi on R such that, on [y(i,)y(i-1)], f is nondecreasing if i is odd and nonincreasing if i is even. For each n >= N(Y), we construct a trigonometric polynomial P-eta of order <= n changing its monotonicity at the same points y(i) epsilon Y as f and such.
引用
收藏
页码:180 / 189
页数:10
相关论文
共 13 条
  • [1] DeVore R. A., 1997, CURVES SURFACES APPL, P95
  • [2] Dzyadyk V. K., 1977, INTRO THEORY UNIFORM
  • [3] Piecewise monotone pointwise approximation
    Dzyubenko, GA
    Gilewicz, J
    Shevchuk, IA
    [J]. CONSTRUCTIVE APPROXIMATION, 1998, 14 (03) : 311 - 348
  • [4] Gilewicz J., 1996, PRIKL MATH, V2
  • [5] Lorentz G. G., 1968, J APPROX THEORY, V1, P501, DOI [10.1016/0021-9045(68)90039-7, DOI 10.1016/0021-9045(68)90039-7]
  • [6] Pleshakov M.G., 1997, THESIS SARATOV STATE
  • [7] Comonotone Jackson's inequality
    Pleshakov, MG
    [J]. JOURNAL OF APPROXIMATION THEORY, 1999, 99 (02) : 409 - 421
  • [8] POPOV PA, 2003, UKR MAT ZH, V55, P1087
  • [9] POPOV PA, 2001, UKR MAT ZH, V53, P919
  • [10] SHVEDOV AS, 1980, DOKL AKAD NAUK SSSR+, V250, P39