HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A CONVOLUTIONAL NEURAL NETWORK AND DISCONTINUITY PRESERVING RELAXATION

被引:0
|
作者
Gao, Qishuo [1 ]
Lim, Samsung [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Hyperspectral image (HSI) classification; convolutional neural network (CNN); discontinuity preserving relaxation (DPR) method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel method for hyperspectral image classification to take advantage of the merits of a convolutional neural network (CNN) and the spatial contextual information of hyperspectral imagery (HSI). We built a novel network consisting of several convolutional, pooling and activation layers to extract the effective features and predict the class membership probability distribution vectors for HSI pixels. Furthermore, in order to fully exploit the spatial contextual information and improve the classification accuracy under the condition of limited training samples, a promising discontinuity preserving relaxation (DPR) algorithm is applied to process the probabilistic results obtained by the CNN work. The proposed method was tested on two widely-used hyperspectral data sets: the Indian Pines and University of Pavia data sets. Experiments revealed that the proposed method can provide competitive results compared to some state-of-the-art methods.
引用
收藏
页码:3591 / 3594
页数:4
相关论文
共 50 条
  • [21] Two-Branch Convolutional Neural Network with Polarized Full Attention for Hyperspectral Image Classification
    Ge, Haimiao
    Wang, Liguo
    Liu, Moqi
    Zhu, Yuexia
    Zhao, Xiaoyu
    Pan, Haizhu
    Liu, Yanzhong
    REMOTE SENSING, 2023, 15 (03)
  • [22] Hyperspectral Images Classification With Gabor Filtering and Convolutional Neural Network
    Chen, Yushi
    Zhu, Lin
    Ghamisi, Pedram
    Jia, Xiuping
    Li, Guoyu
    Tang, Liang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) : 2355 - 2359
  • [23] SquconvNet: Deep Sequencer Convolutional Network for Hyperspectral Image Classification
    Li, Bing
    Wang, Qi-Wen
    Liang, Jia-Hong
    Zhu, En-Ze
    Zhou, Rong-Qian
    REMOTE SENSING, 2023, 15 (04)
  • [24] Convolutional neural network based on an extreme learning machine for image classification
    Park, Youngmin
    Yang, Hyun S.
    NEUROCOMPUTING, 2019, 339 : 66 - 76
  • [25] Image-Based Malware Classification Using Convolutional Neural Network
    Kim, Hae-Jung
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 1352 - 1357
  • [26] Convolutional Neural Network Image Classification Based on Different Color Spaces
    Xian, Zixiang
    Huang, Rubing
    Towey, Dave
    Yue, Chuan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (01): : 402 - 417
  • [27] A Multi-branch Feature Fusion Model Based on Convolutional Neural Network for Hyperspectral Remote Sensing Image Classification
    Zhang, Jinli
    Chen, Ziqiang
    Ji, Yuanfa
    Sun, Xiyan
    Bai, Yang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 147 - 156
  • [28] An Image Classification Algorithm for Plantar Pressure Based on Convolutional Neural Network
    Zou, Ji
    Zhang, Chao
    Ma, Zhongjing
    TRAITEMENT DU SIGNAL, 2021, 38 (02) : 503 - 511
  • [29] An Image Classification Algorithm of Financial Instruments Based on Convolutional Neural Network
    Dong, Jingfei
    Li, Xun
    TRAITEMENT DU SIGNAL, 2020, 37 (06) : 1055 - 1060
  • [30] Texture based Image Species Classification with Deep Convolutional Neural Network
    Sharma, Geetanjali
    Krishna, C. Rama
    2019 IEEE 5TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2019,