HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON A CONVOLUTIONAL NEURAL NETWORK AND DISCONTINUITY PRESERVING RELAXATION

被引:0
|
作者
Gao, Qishuo [1 ]
Lim, Samsung [1 ]
机构
[1] Univ New South Wales, Sch Civil & Environm Engn, Sydney, NSW, Australia
来源
IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2018年
关键词
Hyperspectral image (HSI) classification; convolutional neural network (CNN); discontinuity preserving relaxation (DPR) method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel method for hyperspectral image classification to take advantage of the merits of a convolutional neural network (CNN) and the spatial contextual information of hyperspectral imagery (HSI). We built a novel network consisting of several convolutional, pooling and activation layers to extract the effective features and predict the class membership probability distribution vectors for HSI pixels. Furthermore, in order to fully exploit the spatial contextual information and improve the classification accuracy under the condition of limited training samples, a promising discontinuity preserving relaxation (DPR) algorithm is applied to process the probabilistic results obtained by the CNN work. The proposed method was tested on two widely-used hyperspectral data sets: the Indian Pines and University of Pavia data sets. Experiments revealed that the proposed method can provide competitive results compared to some state-of-the-art methods.
引用
收藏
页码:3591 / 3594
页数:4
相关论文
共 50 条
  • [1] Hyperspectral Image Classification Based on Convolutional Neural Network and Dimension Reduction
    Liu, Xuefeng
    Sun, Qiaoqiao
    Liu, Bin
    Huang, Biao
    Fu, Min
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1686 - 1690
  • [2] Hyperspectral Image Classification With Convolutional Neural Network and Active Learning
    Cao, Xiangyong
    Yao, Jing
    Xu, Zongben
    Meng, Deyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4604 - 4616
  • [3] CONVOLUTIONAL NEURAL NETWORK FOR COASTAL WETLAND CLASSIFICATION IN HYPERSPECTRAL IMAGE
    Liu, Chang
    Zhang, Mengmeng
    Li, Wei
    Sun, Weiwei
    Tao, Ran
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5104 - 5107
  • [4] Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification
    Chen, Yushi
    Zhu, Kaiqiang
    Zhu, Lin
    He, Xin
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09): : 7048 - 7066
  • [5] A Convolutional Neural Network With Mapping Layers for Hyperspectral Image Classification
    Li, Rui
    Pan, Zhibin
    Wang, Yang
    Wang, Ping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3136 - 3147
  • [6] Morphologically dilated convolutional neural network for hyperspectral image classification
    Kumar, Vinod
    Singh, Ravi Shankar
    Dua, Yaman
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 101
  • [7] Heterogeneous Transfer Learning for Hyperspectral Image Classification Based on Convolutional Neural Network
    He, Xin
    Chen, Yushi
    Ghamisi, Pedram
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (05): : 3246 - 3263
  • [8] Structure-Adaptive Convolutional Neural Network for Hyperspectral Image Classification
    Jia, Sen
    Bi, Dongsheng
    Liao, Jianhui
    Jiang, Shuguo
    Xu, Meng
    Zhang, Shuyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [9] Convolutional Neural Network Trained by Joint Loss for Hyperspectral Image Classification
    Ouyang, Ning
    Zhu, Ting
    Lin, Leping
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (03) : 457 - 461
  • [10] Content-Guided Convolutional Neural Network for Hyperspectral Image Classification
    Liu, Qichao
    Xiao, Liang
    Yang, Jingxiang
    Chan, Jonathan Cheung-Wai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 6124 - 6137