ASYMPTOTIC BEHAVIORS AND EXISTENCE OF TRAVELING WAVE SOLUTIONS TO THE KELLER-SEGEL MODEL WITH LOGARITHMIC SENSITIVITY

被引:2
作者
LI, C. H. E. N. [1 ]
Liu, J. I. A. N. G. [1 ]
DU, Z. E. N. G. J., I [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 03期
关键词
Keller-Segel model; traveling wave solutions; asymptotic behavior; geometric singular perturbation; invariant manifold; SINGULAR SENSITIVITY; CHEMOTAXIS SYSTEM; GLOBAL EXISTENCE; NONLINEAR STABILITY; HYPERBOLIC SYSTEM; BOUNDARY-LAYERS; BOUNDEDNESS; DIFFUSION; BACTERIA; BANDS;
D O I
10.3934/dcdsb.2022146
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of traveling wave solutions for the Keller-Segel model with logarithmic sensitivity. By the Hopf-Cole transformation and traveling wave transformation, the degenerate Keller-Segel system is transformed into a singularly perturbed system. By constructing an invariant region to prove the existence of the traveling wave solutions for the degenerate system, we obtain the traveling wave solutions for Keller-Segel system with small parameter by using geometric singular perturbation theory and Fredholm theory. Finally, we discuss the asymptotic behaviors of the traveling wave solutions.
引用
收藏
页码:1771 / 1786
页数:16
相关论文
共 33 条