Implicit MAC scheme for compressible Navier-Stokes equations: low Mach asymptotic error estimates

被引:3
作者
Maltese, David [1 ]
Novotny, Antonin [2 ]
机构
[1] Inst Polytech Sci Avancees, DR2I, 63 Blvd Brandebourg, F-94200 Iwy Sur Seine, France
[2] Univ Toulon & Var, Inst Math Toulon, EA2134, BP 20132, F-83957 La Garde, France
关键词
Navier-Stokes system; finite difference numerical method; finite volume numerical method; marker-and-cell scheme; error estimate; SUITABLE WEAK SOLUTIONS; INCOMPRESSIBLE LIMIT; ISENTROPIC EULER; NUMBER LIMIT; FLOW; EXTENSION; FLUID;
D O I
10.1093/imanum/drz072
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the error between any discrete solution of the implicit marker-and-cell (MAC) numerical scheme for compressible Navier-Stokes equations in the low Mach number regime and an exact strong solution of the incompressible Navier-Stokes equations. The main tool is the relative energy method suggested on the continuous level in Feireisl et al. (2012, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system. J. Math. Fluid Mech., 14, 717-730). Our approach highlights the fact that numerical and mathematical analyses are not two separate fields of mathematics. The result is achieved essentially by exploiting in detail the synergy of analytical and numerical methods. We get an unconditional error estimate in terms of explicitly determined positive powers of the space-time discretization parameters and Mach number in the case of well-prepared initial data and in terms of the boundedness of the error if the initial data are ill prepared. The multiplicative constant in the error estimate depends on a suitable norm of the strong solution but it is independent of the numerical solution itself (and of course, on the discretization parameters and the Mach number). This is the first proof that the MAC scheme is unconditionally and uniformly asymptotically stable in the low Mach number regime.
引用
收藏
页码:122 / 163
页数:42
相关论文
共 37 条
[1]   Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation [J].
Bispen, Georgij ;
Lukacova-Medvid'ova, Maria ;
Yelash, Leonid .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 :222-248
[2]  
CALIF3D, 2019, SOFTW COMP LIBR COMP
[3]   A projection method for low speed flows [J].
Colella, P ;
Pao, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :245-269
[4]  
DAFERMOS CM, 1979, ARCH RATION MECH AN, V70, P167, DOI 10.1007/BF00250353
[5]   All Speed Scheme for the Low Mach Number Limit of the Isentropic Euler Equations [J].
Degond, Pierre ;
Tang, Min .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (01) :1-31
[6]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[7]   The low mach number limit for the full navier-stokes-fourier system [J].
Feireisl, Eduard ;
Novotny, Antonin .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 186 (01) :77-107
[8]   ASYMPTOTIC PRESERVING ERROR ESTIMATES FOR NUMERICAL SOLUTIONS OF COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE LOW MACH NUMBER REGIME [J].
Feireisl, Eduard ;
Lukacova-Medvid'ova, Maria ;
Necasova, Sarka ;
Novotny, Antonin ;
She, Bangwei .
MULTISCALE MODELING & SIMULATION, 2018, 16 (01) :150-183
[9]   Inviscid Incompressible Limits of the Full Navier-Stokes-Fourier System [J].
Feireisl, Eduard ;
Novotny, Antonin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 321 (03) :605-628
[10]   Relative Entropies, Suitable Weak Solutions, and Weak-Strong Uniqueness for the Compressible Navier-Stokes System [J].
Feireisl, Eduard ;
Jin, Bum Ja ;
Novotny, Antonin .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2012, 14 (04) :717-730