On the simplicity of homeomorphism groups of a tilable lamination

被引:4
作者
Aliste-Prieto, Jose [1 ]
Petite, Samuel [2 ]
机构
[1] Univ Andres Bello, Dept Matemat, Republ 498, Santiago, Chile
[2] Univ Picardie Jules Verne, CNRS, UMR 7352, Lab Amienois Math Fondamentale & Appl, 33 Rue St Leu, F-80039 Amiens, France
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 181卷 / 02期
关键词
Simple groups; Homeomorphism groups; Tiling spaces; Tilable laminations; DIFFEOMORPHISMS; PERFECT; SPACES;
D O I
10.1007/s00605-016-0921-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the identity component of the group of homeomorphisms that preserve all leaves of a -tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain similar results for homeomorphisms preserving the vertical structure.
引用
收藏
页码:285 / 300
页数:16
相关论文
共 18 条
[11]   GROUP OF TORUS DIFFEOMORPHISMS [J].
HERMAN, MR .
ANNALES DE L INSTITUT FOURIER, 1973, 23 (02) :75-86
[12]   Pattern-equivariant functions and cohomology [J].
Kellendonk, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (21) :5765-5772
[13]   Topological friction in aperiodic minimal Rm-actions [J].
Kwapisz, Jaroslaw .
FUNDAMENTA MATHEMATICAE, 2010, 207 (02) :175-178
[14]   COMMUTATORS OF DIFFEOMORPHISMS .3. A GROUP WHICH IS NOT PERFECT [J].
MATHER, JN .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (01) :122-124
[15]   THE IDENTITY COMPONENT OF THE LEAF PRESERVING DIFFEOMORPHISM GROUP IS PERFECT [J].
RYBICKI, T .
MONATSHEFTE FUR MATHEMATIK, 1995, 120 (3-4) :289-305
[16]   FOLIATIONS AND GROUPS OF DIFFEOMORPHISMS [J].
THURSTON, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (02) :304-307
[17]  
Tsuboi T, 2008, Groups of Diffeomor-phisms: In Honor of Shigeyuki Morita on the Occasion of His 60th Birthday, P505, DOI DOI 10.2969/ASPM/05210505
[18]  
Tsuboi T., 2006, FOLIATIONSED 2005, P411