Basis profile curve identification to understand electrical stimulation effects in human brain networks

被引:12
作者
Miller, Kai J. [1 ,2 ]
Mueller, Klaus-Robert [3 ,4 ,5 ,6 ]
Hermes, Dora [2 ]
机构
[1] Mayo Clin, Dept Neurol Surg, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Biomed Engn & Physiol, Rochester, MN 55905 USA
[3] Google Res, Brain Team, Berlin, Germany
[4] Berlin Inst Technol, Dept Comp Sci, Machine Learning Grp, Berlin, Germany
[5] Korea Univ, Dept Artificial Intelligence, Seoul, South Korea
[6] Max Planck Inst Informat, Saarbrucken, Germany
关键词
EVOKED-POTENTIALS; RESPONSES; CORTEX;
D O I
10.1371/journal.pcbi.1008710
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Brain networks can be explored by delivering brief pulses of electrical current in one area while measuring voltage responses in other areas. We propose a convergent paradigm to study brain dynamics, focusing on a single brain site to observe the average effect of stimulating each of many other brain sites. Viewed in this manner, visually-apparent motifs in the temporal response shape emerge from adjacent stimulation sites. This work constructs and illustrates a data-driven approach to determine characteristic spatiotemporal structure in these response shapes, summarized by a set of unique "basis profile curves " (BPCs). Each BPC may be mapped back to underlying anatomy in a natural way, quantifying projection strength from each stimulation site using simple metrics. Our technique is demonstrated for an array of implanted brain surface electrodes in a human patient. This framework enables straightforward interpretation of single-pulse brain stimulation data, and can be applied generically to explore the diverse milieu of interactions that comprise the connectome.
引用
收藏
页数:20
相关论文
共 39 条
  • [1] The spread of activity in the cerebral cortex
    Adrian, ED
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 1936, 88 (02): : 127 - 160
  • [2] [Anonymous], 1908, BIOMETRIKA, V6, P1
  • [3] Temporal kernel CCA and its application in multimodal neuronal data analysis
    Biessmann, Felix
    Meinecke, Frank C.
    Gretton, Arthur
    Rauch, Alexander
    Rainer, Gregor
    Logothetis, Nikos K.
    Mueller, Klaus-Robert
    [J]. MACHINE LEARNING, 2010, 79 (1-2) : 5 - 27
  • [4] Bishop C. M., 2006, PATTERN RECOGNITION, DOI DOI 10.1117/1.2819119
  • [5] Brodmann K., 1909, VERGLEICHENDE LOKALI
  • [6] DYNAMICAL FUNCTIONAL PREDICTION AND CLASSIFICATION, WITH APPLICATION TO TRAFFIC FLOW PREDICTION
    Chiou, Jeng-Min
    [J]. ANNALS OF APPLIED STATISTICS, 2012, 6 (04) : 1588 - 1614
  • [7] A quantitative method for evaluating cortical responses to electrical stimulation
    Crowther, Lawrence J.
    Brunner, Peter
    Kapeller, Christoph
    Guger, Christoph
    Kamada, Kyousuke
    Bunch, Marjorie E.
    Frawley, Bridget K.
    Lynch, Timothy M.
    Ritaccio, Anthony L.
    Schalk, Gerwin
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2019, 311 : 67 - 75
  • [8] Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
    Daehne, Sven
    Biessmann, Felix
    Samek, Wojciech
    Haufe, Stefan
    Goltz, Dominique
    Gundlach, Christopher
    Villringer, Arno
    Fazli, Siamac
    Muller, Klaus-Robert
    [J]. PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1507 - 1530
  • [9] Efron B., 1994, INTRO BOOTSTRAP
  • [10] Connections of the limbic network: A corticocortical evoked potentials study
    Enatsu, Rei
    Gonzalez-Martinez, Jorge
    Bulacio, Juan
    Kubota, Yuichi
    Mosher, John
    Burgess, Richard C.
    Najm, Imad
    Nair, Dileep R.
    [J]. CORTEX, 2015, 62 : 20 - 33