Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity

被引:19
作者
Ebert, M. R. [1 ]
Reissig, M. [2 ]
机构
[1] Univ Sao Paulo, Dept Comp & Matemat, FFCLRP, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Tech Univ Bergakad Freiberg, Fac Math & Comp Sci, Pruferstr 9, D-09596 Freiberg, Germany
基金
巴西圣保罗研究基金会;
关键词
de Sitter model; Power-nonlinearity; Small data global existence; Fractional chain rule; Fractional Leibniz rule; Fractional Gagliardo Nirenberg; inequality; KLEIN-GORDON EQUATIONS; SCALAR FIELD; WAVE MODELS; SPACETIME; PROPAGATION; SPEED;
D O I
10.1016/j.nonrwa.2017.08.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Cauchy problem for semi-linear de Sitter models with power non-linearity. The model of interest is phi tt-e(-2t)Delta phi+n phi t+m(2 phi)=vertical bar phi vertical bar, (phi(0,x),phi t(0,x))=(f(x),g(x)) where m(2) is a non -negative constant. We study the global (in time) existence of small data solutions. In particular, we show the interplay between the power p, admissible data spaces and admissible spaces of solutions (in weak sense, in sense of energy solutions or in classical sense). (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 54
页数:41
相关论文
共 22 条
  • [1] [Anonymous], 1953, HIGHER TRANSCENDENTA
  • [2] Bateman H, 1953, HIGHER TRANSCENDENTA, VII
  • [3] Bohme C., 2012, ANN U FERRARA SEZ 7, V58, P229, DOI DOI 10.1007/S11565-012-0153-9
  • [4] Bohme C., 2011, THESIS
  • [5] Global existence of small data solutions for wave models with sub-exponential propagation speed
    Bui, Tang Bao Ngoc
    Reissig, Michael
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 129 : 173 - 188
  • [6] DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION
    CHRIST, FM
    WEINSTEIN, MI
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) : 87 - 109
  • [7] A shift in the Strauss exponent for semilinear wave equations with a not effective damping
    D'Abbicco, Marcello
    Lucente, Sandra
    Reissig, Michael
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5040 - 5073
  • [8] Theory of damped wave models with integrable and decaying in time speed of propagation
    Ebert, Marcelo Rempel
    Reissig, Michael
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 417 - 439
  • [9] Galstian A., 2003, APPL ANAL, V82, P197, DOI DOI 10.1080/0003681031000063720
  • [10] Global in time existence of self-interacting scalar field in de Sitter spacetimes
    Galstian, Anahit
    Yagdjian, Karen
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 34 : 110 - 139