Kerr-Newman black hole in the formalism of isolated horizons

被引:12
作者
Scholtz, M. [1 ]
Flandera, A. [1 ]
Guerlebeck, Norman [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech Republic
[2] Univ Bremen, ZARM, D-28359 Bremen, Germany
[3] DLR Inst Space Syst, Linzer Str 1, D-28359 Bremen, Germany
关键词
MULTIPOLE MOMENTS; GEOMETRY; SPACE;
D O I
10.1103/PhysRevD.96.064024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The near horizon geometry of general black holes in equilibrium can be conveniently characterized in the formalism of weakly isolated horizons in the form of the Bondi-like expansions (Krishnan B, Classical Quantum Gravity 29, 205006, 2012). While the intrinsic geometry of the Kerr-Newman black hole has been extensively investigated in the weakly isolated horizon framework, the off-horizon description in the Bondi-like system employed by Krishnan has not been studied. We extend Krishnan's work by explicit, nonperturbative construction of the Bondi-like tetrad in the full Kerr-Newman spacetime. Namely, we construct the Bondi-like tetrad which is parallelly propagated along a nontwisting null geodesic congruence transversal to the horizon and provide all Newman-Penrose scalars associated with this tetrad. This work completes the description of the Kerr-Newman spacetime in the formalism of weakly isolated horizons and is a starting point for the investigation of deformed black holes.
引用
收藏
页数:15
相关论文
共 38 条
[11]   SPIN-S SPHERICAL HARMONICS AND EDTH [J].
GOLDBERG, JN ;
MACFARLA.AJ ;
NEWMAN, ET ;
ROHRLICH, F ;
SUDARSHA.CG .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) :2155-&
[12]  
Griffiths J.B., 2009, Cambridge Monographs on Mathematical Physics
[13]   Meissner effect for weakly isolated horizons [J].
Grlebeck, Norman ;
Scholtz, Martin .
PHYSICAL REVIEW D, 2017, 95 (06)
[14]   No-Hair Theorem for Black Holes in Astrophysical Environments [J].
Guerlebeck, Norman .
PHYSICAL REVIEW LETTERS, 2015, 114 (15)
[15]   Source integrals for multipole moments in static and axially symmetric spacetimes [J].
Guerlebeck, Norman .
PHYSICAL REVIEW D, 2014, 90 (02)
[16]   MULTIPOLE MOMENTS OF STATIONARY SPACE-TIMES [J].
HANSEN, RO .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) :46-52
[17]   Conformal Yano-Killing tensor for the Kerr metric and conserved quantities [J].
Jezierski, J ;
Lukasik, M .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (09) :2895-2918
[18]   Testing General Relativity with the Shadow Size of Sgr A [J].
Johannsen, Tim ;
Broderick, Avery E. ;
Plewa, Philipp M. ;
Chatzopoulos, Sotiris ;
Doeleman, Sheperd S. ;
Eisenhauer, Frank ;
Fish, Vincent L. ;
Genzel, Reinhard ;
Gerhard, Ortwin ;
Johnson, Michael D. .
PHYSICAL REVIEW LETTERS, 2016, 116 (03)
[19]   KILLING-YANO TENSORS AND VARIABLE SEPARATION IN KERR GEOMETRY [J].
KALNINS, EG ;
MILLER, W ;
WILLIAMS, GC .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2360-2365
[20]   TYPE D VACUUM METRICS [J].
KINNERSLEY, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) :1195-+