Kerr-Newman black hole in the formalism of isolated horizons

被引:11
作者
Scholtz, M. [1 ]
Flandera, A. [1 ]
Guerlebeck, Norman [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Inst Theoret Phys, V Holesovickach 2, Prague 18200, Czech Republic
[2] Univ Bremen, ZARM, D-28359 Bremen, Germany
[3] DLR Inst Space Syst, Linzer Str 1, D-28359 Bremen, Germany
关键词
MULTIPOLE MOMENTS; GEOMETRY; SPACE;
D O I
10.1103/PhysRevD.96.064024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The near horizon geometry of general black holes in equilibrium can be conveniently characterized in the formalism of weakly isolated horizons in the form of the Bondi-like expansions (Krishnan B, Classical Quantum Gravity 29, 205006, 2012). While the intrinsic geometry of the Kerr-Newman black hole has been extensively investigated in the weakly isolated horizon framework, the off-horizon description in the Bondi-like system employed by Krishnan has not been studied. We extend Krishnan's work by explicit, nonperturbative construction of the Bondi-like tetrad in the full Kerr-Newman spacetime. Namely, we construct the Bondi-like tetrad which is parallelly propagated along a nontwisting null geodesic congruence transversal to the horizon and provide all Newman-Penrose scalars associated with this tetrad. This work completes the description of the Kerr-Newman spacetime in the formalism of weakly isolated horizons and is a starting point for the investigation of deformed black holes.
引用
收藏
页数:15
相关论文
共 38 条
  • [11] SPIN-S SPHERICAL HARMONICS AND EDTH
    GOLDBERG, JN
    MACFARLA.AJ
    NEWMAN, ET
    ROHRLICH, F
    SUDARSHA.CG
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (11) : 2155 - &
  • [12] Griffiths J.B., 2009, Cambridge Monographs on Mathematical Physics
  • [13] Meissner effect for weakly isolated horizons
    Grlebeck, Norman
    Scholtz, Martin
    [J]. PHYSICAL REVIEW D, 2017, 95 (06)
  • [14] No-Hair Theorem for Black Holes in Astrophysical Environments
    Guerlebeck, Norman
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (15)
  • [15] Source integrals for multipole moments in static and axially symmetric spacetimes
    Guerlebeck, Norman
    [J]. PHYSICAL REVIEW D, 2014, 90 (02):
  • [16] MULTIPOLE MOMENTS OF STATIONARY SPACE-TIMES
    HANSEN, RO
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) : 46 - 52
  • [17] Conformal Yano-Killing tensor for the Kerr metric and conserved quantities
    Jezierski, J
    Lukasik, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (09) : 2895 - 2918
  • [18] Testing General Relativity with the Shadow Size of Sgr A
    Johannsen, Tim
    Broderick, Avery E.
    Plewa, Philipp M.
    Chatzopoulos, Sotiris
    Doeleman, Sheperd S.
    Eisenhauer, Frank
    Fish, Vincent L.
    Genzel, Reinhard
    Gerhard, Ortwin
    Johnson, Michael D.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (03)
  • [19] KILLING-YANO TENSORS AND VARIABLE SEPARATION IN KERR GEOMETRY
    KALNINS, EG
    MILLER, W
    WILLIAMS, GC
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) : 2360 - 2365
  • [20] TYPE D VACUUM METRICS
    KINNERSLEY, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) : 1195 - +