Families of congruences for fractional partition functions modulo powers of primes

被引:0
|
作者
Baruah, Nayandeep Deka [1 ]
Das, Hirakjyoti [1 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
关键词
Partition; n-color partition; n-colored partition; Fractional partition function; Congruence; Rogers-Ramanujan continued fraction; CUBIC CONTINUED-FRACTION; RAMANUJAN;
D O I
10.1007/s40993-021-00287-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Chan and Wang studied the fractional partition function and found several infinite classes of congruences satisfied by the corresponding coefficients. In this paper, we find new families of congruences modulo powers of primes using the Rogers-Ramanujan continued fraction and some dissection formulae of certain q-products. We also find analogous congruences in the coefficients of the fractional powers of the generating function for the 2-color partition function.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] CONGRUENCES FOR k DOTS BRACELET PARTITION FUNCTIONS
    Cui, Su-Ping
    Gu, Nancy Shan Shan
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) : 1885 - 1894
  • [22] New congruences modulo powers of 2 and 3 for 9-regular partitions
    Yao, Olivia X. M.
    JOURNAL OF NUMBER THEORY, 2014, 142 : 89 - 101
  • [23] Congruences modulo powers of 2 for t-colored overpartitions
    Nayaka, S. Shivaprasada
    Naika, M. S. Mahadeva
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2022, 28 (03):
  • [24] Congruences modulo powers of 11 for some eta-quotients
    Petta Mestrige, Shashika
    RESEARCH IN NUMBER THEORY, 2019, 6 (01)
  • [25] New congruences modulo 5 for partition related to mock theta function ω(q)
    Lin, Bernard L. S.
    Xiao, Jiejuan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (01) : 141 - 148
  • [26] Congruences for 5-regular partitions modulo powers of 5
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2017, 44 (02) : 343 - 358
  • [27] Infinite families of congruences modulo 9 for 9-regular partitions
    Chen, Na
    Li, Xiaorong
    Yao, Olivia X. M.
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02): : 163 - 172
  • [28] Some New Congruences Modulo 5 for the General Partition Function
    Srivatsa Kumar, B. R.
    Shruthi
    Ranganatha, D.
    RUSSIAN MATHEMATICS, 2020, 64 (07) : 73 - 78
  • [29] Infinite Families of Congruences Modulo 5 for the Number of Irreducible Characters of the Alternating Groups
    Jin, Jing
    Jin, Liu Xin
    Yao, Olivia X. M.
    EXPERIMENTAL MATHEMATICS, 2024,
  • [30] New infinite families of congruences modulo 8 for partitions with even parts distinct
    Xia, Ernest X. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04)