共 1 条
Simultaneous monitoring of tissue PO2 and NADH fluorescence during synaptic stimulation and spreading depression reveals a transient dissociation between oxygen utilization and mitochondrial redox state in rat hippocampal slices
被引:43
|作者:
Galeffi, Francesca
[1
,2
,3
]
Somjen, George G.
[4
,5
]
Foster, Kelley A.
[1
,2
,3
]
Turner, Dennis A.
[1
,2
,3
,4
]
机构:
[1] Duke Univ, Med Ctr, Dept Surg, Div Neurosurg, Durham, NC 27710 USA
[2] DVAMC, Res Serv, Durham, NC USA
[3] DVAMC, Surg Serv, Durham, NC USA
[4] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
[5] Duke Univ, Med Ctr, Dept Cell Biol, Durham, NC 27710 USA
来源:
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
|
2011年
/
31卷
/
02期
关键词:
hippocampus;
mitochondria;
optical imaging;
oxidative metabolism;
oxygen sensor;
INTRINSIC OPTICAL SIGNALS;
CEREBRAL-CORTEX;
OXIDATIVE-PHOSPHORYLATION;
METABOLIC-ACTIVITY;
NEURAL ACTIVITY;
BRAIN CORTEX;
BLOOD-FLOW;
HYPOXIA;
ENERGY;
DEPOLARIZATION;
D O I:
10.1038/jcbfm.2010.136
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Nicotinamide adenine dinucleotide (NADH) imaging can be used to monitor neuronal activation and ascertain mitochondrial dysfunction, for example during hypoxia. During neuronal stimulation in vitro, NADH normally becomes more oxidized, indicating enhanced oxygen utilization. A subsequent NADH overshoot during activation or on recovery remains controversial and reflects either increased metabolic activity or limited oxygen availability. Tissue PO2 measurements, obtained simultaneously with NADH imaging in area CA1 in hippocampal slices, reveal that during prolonged train stimulation (ST) in 95% O-2, a persistent NADH oxidation is coupled with increased metabolic demand and oxygen utilization, for the duration of the stimulation. However, under conditions of either decreased oxygen supply (ST-50% O-2) or enhanced metabolic demand (K+ induced spreading depression (K+-SD) 95% O-2) the NADH oxidation is brief and the redox balance shifts early toward reduction, leading to a prolonged NADH overshoot. Yet, oxygen utilization remains elevated and is correlated with metabolic demand. Under these conditions, it appears that the rate of NAD(+) reduction may transiently exceed oxidation, to maintain an adequate oxygen flux and ATP production. In contrast, during SD in 50% O-2, the oxygen levels dropped to a point at which oxidative metabolism in the electron transport chain is limited and the rate of utilization declined. Journal of Cerebral Blood Flow & Metabolism (2011) 31, 626-639; doi: 10.1038/jcbfm.2010.136; published online 25 August 2010
引用
收藏
页码:626 / 639
页数:14
相关论文