Machine learning approach with baseline clinical data forecasting depression relapse in bipolar disorder

被引:0
|
作者
Dias, R.
Salvini, R. [1 ]
Nierenberg, A. [2 ]
Lafer, B. [3 ]
机构
[1] Univ Fed Goias, Informat, Goiania, Go, Brazil
[2] Harvard Med Sch, Massachussets Gen Hosp, Psychiat Bipolar Clin & Res Program, Boston, MA USA
[3] Univ Sao Paulo, Fac Med, Psychiat Bipolar Disorder Res Program, Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
P-108
引用
收藏
页码:103 / 103
页数:1
相关论文
共 50 条
  • [41] Skew Index: a machine learning forecasting approach
    Vanegas, Esteban
    Mora-Valencia, Andres
    RISK MANAGEMENT-AN INTERNATIONAL JOURNAL, 2025, 27 (01):
  • [42] Forecasting Electricity Prices: A Machine Learning Approach
    Castelli, Mauro
    Groznik, Ales
    Popovic, Ales
    ALGORITHMS, 2020, 13 (05)
  • [43] A Machine Learning Approach to Forecasting Hydropower Generation
    Di Grande, Sarah
    Berlotti, Mariaelena
    Cavalieri, Salvatore
    Gueli, Roberto
    ENERGIES, 2024, 17 (20)
  • [44] Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach
    Dinga, Richard
    Marquand, Andre F.
    Veltman, Dick J.
    Beekman, Aartjan T. F.
    Schoevers, Robert A.
    van Hemert, Albert M.
    Penninx, Brenda W. J. H.
    Schmaal, Lianne
    TRANSLATIONAL PSYCHIATRY, 2018, 8
  • [45] Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: a machine learning approach
    Richard Dinga
    Andre F. Marquand
    Dick J. Veltman
    Aartjan T. F. Beekman
    Robert A. Schoevers
    Albert M. van Hemert
    Brenda W. J. H. Penninx
    Lianne Schmaal
    Translational Psychiatry, 8
  • [46] Predicting the naturalistic course of depression from a wide range of clinical, psychological and biological data: a machine learning approach
    Dinga, R.
    Marquand, A.
    Veltman, D.
    Beekman, A.
    Schoevers, R.
    Van Hemert, A.
    Penninx, B.
    Schmaal, L.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2018, 28 : S88 - S89
  • [47] Glaucoma detection: Binocular approach and clinical data in machine learning
    Kovalyk-Borodyak, Oleksandr
    Morales-Sanchez, Juan
    Verdu-Monedero, Rafael
    Sancho-Gomez, Jose-Luis
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2025, 160
  • [48] Bipolar disorder hospitalizations - a big data approach
    Goncalves-Pinho, M.
    Ribeiro, J. P.
    Freitas, A.
    EUROPEAN PSYCHIATRY, 2021, 64 : S77 - S77
  • [49] Erratum to: Influence of family history of major depression, bipolar disorder, and suicide on clinical features in patients with major depression and bipolar disorder
    Alessandro Serretti
    Alberto Chiesa
    Raffaella Calati
    Sylvie Linotte
    Othman Sentissi
    Konstantinos Papageorgiou
    Siegfried Kasper
    Joseph Zohar
    Diana De Ronchi
    Julien Mendlewicz
    Daniela Amital
    Stuart Montgomery
    Daniel Souery
    European Archives of Psychiatry and Clinical Neuroscience, 2013, 263 : 617 - 617
  • [50] Volumetric brain magnetic resonance imaging predicts functioning in bipolar disorder: A machine learning approach
    Sartori, Juliana M.
    Reckziegel, Ramiro
    Passos, Ives Cavalcante
    Czepielewski, Leticia S.
    Fijtman, Adam
    Sodre, Leonardo A.
    Massuda, Raffael
    Goi, Pedro D.
    Vianna-Sulzbach, Mireia
    Cardoso, Taiane de Azevedo
    Kapczinski, Flavio
    Mwangi, Benson
    Gama, Clarissa S.
    JOURNAL OF PSYCHIATRIC RESEARCH, 2018, 103 : 237 - 243