The growth theorem of biholomorphic mappings on a Banach space

被引:0
作者
Honda, T [1 ]
机构
[1] Ariake Natl Coll Technol, Fukuoka 8368585, Japan
来源
FINITE OR INFINITE DIMENSIONAL COMPLEX ANALYSIS | 2000年 / 214卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let parallel to . parallel to be an arbitrary norm on a Banach space E. Let B be the open unit ball of E for the norm parallel to . parallel to, and let f : B --> E be a biholomorphic convex mapping such that f(0) = 0 and df(0) is identity. We will give an upper bound of the growth of f.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 12 条
  • [1] [Anonymous], 1989, OXFORD MATH MONOGRAP
  • [2] Dineen S., 1981, Complex analysis in locally convex spaces
  • [3] Dunford N., 1958, LINEAR OPERATORS
  • [4] SOME BOUNDS ON CONVEX MAPPINGS IN SEVERAL COMPLEX-VARIABLES
    FITZGERALD, CH
    THOMAS, CR
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (02) : 295 - 320
  • [5] Franzoni T., 1980, N HOLLAND MATH STUDI, V40
  • [6] GONG S, 1991, CHIN Q J MATH, V6, P78
  • [7] Gong S., 1993, CONT MATH, V142, P15
  • [8] The growth theorem of convex mappings on the unit ball in Cn
    Hamada, H
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) : 1075 - 1077
  • [9] Herve M., 1989, ANAL INFINITE DIMENS, DOI [10.1515/9783110856941, DOI 10.1515/9783110856941]
  • [10] Jarnicki M., 1993, Invariant distances and metrics in complex analysis