Parallelization of Particle Swarm Optimization using Message Passing Interfaces (MPIs)

被引:4
|
作者
Singhal, Gagan [1 ]
Jain, Abhishek [1 ]
Patnaik, Amalendu [1 ]
机构
[1] IIT Roorkee, Dept Elect & Comp Engn, Uttarakhand 247667, India
来源
2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009) | 2009年
关键词
asynchronous PSO; parallel computing; message passing interfaces;
D O I
10.1109/NABIC.2009.5393602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the growing demand of accuracy and low computational time in optimizing functions in various fields of engineering, an approach has been presented using the technique of parallel computing. The parallelization has been carried out on one of the simplest and flexible optimization algorithms, namely the particle swarm optimization (PSO) algorithm. PSO is a stochastic population global optimizer and the initial population may be provided with random values and later convergence may be achieved. The use of message passing interfaces (MPIs) for the parallelization of the asynchronous version of PSO is proposed. In this approach, initial population has been divided between the processors chosen at run time. Numerical values obtained using above approach are at last compared for standard test functions.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [11] PARALLELIZATION OF LATTICE BOLTZMANN METHOD FOR CFD USING MESSAGE PASSING INTERFACE
    Bashir, Shazia
    Usman, Anila
    Mumtaz, Yasir
    Mahmoud, Khaled H.
    Alsubaie, Abdullah S. A.
    Bashir, Muhammad
    Afzal, Farkhanda
    Inc, Mustafa
    THERMAL SCIENCE, 2022, 26 : S211 - S218
  • [12] PARALLELIZATION OF LATTICE BOLTZMANN METHOD FOR CFD USING MESSAGE PASSING INTERFACE
    Bashir, Shazia
    Usman, Anila
    Mumtaz, Yasir
    Mahmoud, Khaled H.
    Alsubaie, Abdullah S. A.
    Bashir, Muhammad
    Afzal, Farkhanda
    Inc, Mustafa
    THERMAL SCIENCE, 2022, 26 : 211 - 218
  • [13] Study of Particle Swarm Optimization Algorithms Using Message Passing Interface and Graphical Processing Units Employing a High Performance Computing Cluster
    Santana-Castolo, Manuel-H.
    Alejandro Morales, J.
    Torres-Ramos, Sulema
    Alanis, Alma Y.
    HIGH PERFORMANCE COMPUTER APPLICATIONS, 2016, 595 : 116 - 131
  • [14] Asynchronous parallelization of particle swarm optimization through digital pheromone sharing
    Kalivarapu, Vijay K.
    Winer, Eliot H.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2009, 39 (03) : 263 - 281
  • [15] Asynchronous parallelization of particle swarm optimization through digital pheromone sharing
    Vijay K. Kalivarapu
    Eliot H. Winer
    Structural and Multidisciplinary Optimization, 2009, 39 : 263 - 281
  • [16] The Optimization of aperiodic message transmission on MVB based on Particle Swarm Optimization
    Chen, Jiakai
    He, Yan
    Wei, Wei
    2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 7 - 11
  • [17] Particle methods as message passing
    Dauwels, Justin
    Korl, Sascha
    Loeliger, Hans-Andrea
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 2052 - +
  • [18] Backward Particle Message Passing
    Wymeersch, Henk
    Irukulapati, Naga V.
    Sackey, Isaac A.
    Johannisson, Pontus
    Agrell, Erik
    2015 IEEE 16TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2015, : 450 - 454
  • [19] Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface
    Alvioli, M.
    Baum, R. L.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2016, 81 : 122 - 135
  • [20] Resemblance of Biological Particle Swarm Optimization and Particle Swarm Optimization for CBFR by using NN
    Dubey, Deepika
    Tomar, Geetam Singh
    MATERIALS TODAY-PROCEEDINGS, 2020, 29 : 408 - 419