Parallelization of Particle Swarm Optimization using Message Passing Interfaces (MPIs)

被引:4
|
作者
Singhal, Gagan [1 ]
Jain, Abhishek [1 ]
Patnaik, Amalendu [1 ]
机构
[1] IIT Roorkee, Dept Elect & Comp Engn, Uttarakhand 247667, India
来源
2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009) | 2009年
关键词
asynchronous PSO; parallel computing; message passing interfaces;
D O I
10.1109/NABIC.2009.5393602
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the growing demand of accuracy and low computational time in optimizing functions in various fields of engineering, an approach has been presented using the technique of parallel computing. The parallelization has been carried out on one of the simplest and flexible optimization algorithms, namely the particle swarm optimization (PSO) algorithm. PSO is a stochastic population global optimizer and the initial population may be provided with random values and later convergence may be achieved. The use of message passing interfaces (MPIs) for the parallelization of the asynchronous version of PSO is proposed. In this approach, initial population has been divided between the processors chosen at run time. Numerical values obtained using above approach are at last compared for standard test functions.
引用
收藏
页码:67 / 71
页数:5
相关论文
共 50 条
  • [1] Parallel Particle Swarm Optimization Using Message Passing Interface
    Zhang, Guang-Wei
    Zhan, Zhi-Hui
    Du, Ke-Jing
    Lin, Ying
    Chen, Wei-Neng
    Li, Jing-Jing
    Zhang, Jun
    PROCEEDINGS OF THE 18TH ASIA PACIFIC SYMPOSIUM ON INTELLIGENT AND EVOLUTIONARY SYSTEMS, VOL 1, 2015, : 55 - 64
  • [2] A speculative approach to parallelization in particle swarm optimization
    Gardner, Matthew
    McNabb, Andrew
    Seppi, Kevin
    SWARM INTELLIGENCE, 2012, 6 (02) : 77 - 116
  • [3] A speculative approach to parallelization in particle swarm optimization
    Matthew Gardner
    Andrew McNabb
    Kevin Seppi
    Swarm Intelligence, 2012, 6 : 77 - 116
  • [4] Parallelization of a hydrological model using the message passing interface
    Wu, Yiping
    Li, Tiejian
    Sun, Liqun
    Chen, Ji
    ENVIRONMENTAL MODELLING & SOFTWARE, 2013, 43 : 124 - 132
  • [5] cuPSO: GPU Parallelization for Particle Swarm Optimization Algorithms
    Wang, Chuan-Chi
    Ho, Chun-Yen
    Tu, Chia-Heng
    Hung, Shih-Hao
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1183 - 1189
  • [6] Synchronous parallelization of Particle Swarm Optimization with digital pheromones
    Kalivarapu, Vijay
    Foo, Jung-Leng
    Winer, Eliot
    ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (10) : 975 - 985
  • [7] Parallelization of prime number generation using message passing interface
    Aziz, Izzatdin
    Haron, Nazleeni
    Jung, Low Tan
    Wan Dagang, Wan Rahaya
    CIMMACS '07: PROCEEDINGS OF THE 6TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, 2007, : 94 - +
  • [8] Parallelization of prime number generation using message passing interface
    Department of Computer and Information Sciences, Universiti Teknologi Petronas, 31750 Tronoh Perak, Malaysia
    WSEAS Trans. Comput., 2008, 4 (291-303):
  • [9] Parallelization strategies for bee colony optimization based on message passing communication protocol
    Davidovic, Tatjana
    Jaksic, Tatjana
    Ramljak, Dusan
    Selmic, Milica
    Teodorovic, Dusan
    OPTIMIZATION, 2013, 62 (08) : 1113 - 1142
  • [10] ANALYSIS OF MULTIGRID PARALLELIZATION ON MESSAGE PASSING COMPUTERS
    ZH.ENG-QUAN XUi and NENG-CHAO WANGZ(Department of Computer Science. Deprtment Of MathematicsHuazhong University of Science and Technology430074 Wuhan
    WuhanUniversityJournalofNaturalSciences, 1996, (Z1) : 686 - 691