Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries

被引:36
|
作者
Park, Jin-Sung [1 ]
Wang, Sung Eun [1 ,2 ]
Jung, Dae Soo [2 ]
Lee, Jung-Kul [3 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Ceram Engn & Technol, Energy & Environm Div, Jinju 52851, Gyeongnam, South Korea
[3] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Vanadium nitride; Graphene oxide; Cathode materials; Spray pyrolysis; Zinc-ion batteries; ANODE MATERIAL; CARBON NANOFIBERS; DOPED GRAPHENE; PERFORMANCE; COMPOSITE; KINETICS;
D O I
10.1016/j.cej.2022.137266
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are receiving considerable research highlights owing to their high safety and environment-friendliness. To implement this promising technology for grid-scale energy storage, effective cathode materials with high capacity, cycle stability, and electrochemical kinetics should be developed. Herein, the synthesis of uniquely structured porous VN-reduced graphene oxide composite (VN-rGO) microspheres through a facile spray pyrolysis process and their application as cathodes for ZIBs are introduced. The electro-chemical reaction mechanism of VN-rGO microspheres with zinc ions is investigated through various in situ and ex situ analyses. During the initial charge process, VN phase transforms into the Zn-3(OH)(2)V2O7.2H(2)O (ZVOH) phase. From the second cycle and on, the ZVOH phase undergoes zinc-ion ingress and egress processes. VN-rGO microspheres exhibit an unprecedented high capacity (809 mA h g(-1) at 0.1 A g-1), high energy density (613 W h kg(-1)), and good rate capability (467 mA h g(-1) at 2.0 A g(-1)). The cathode delivers a reversible capacity of 445 mA h g(-1) after 400 cycles at 1.0 A g(-1), which ascertains the robustness of the structure. The 3D porous rGO matrix to which VN nanocrystals are homogenously anchored accelerates the zinc-ion storage kinetics and en-dows the cathode with structural robustness.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Polyaniline/graphene oxide nanocomposite as an innovative cathode for high energy density aqueous zinc-ion batteries
    Wang, Biao
    Ma, An-ning
    She, Jiaxuan
    Zhao, Ziyao
    Xia, En-Jie
    Deng, Shu-Hao
    ELECTROCHIMICA ACTA, 2024, 506
  • [32] Graphene Nanoribbons on Highly Porous 3D Graphene for High-Capacity and Ultrastable Al-Ion Batteries
    Yu, Xinzhi
    Wang, Bin
    Gong, Decai
    Xu, Zhi
    Lu, Bingan
    ADVANCED MATERIALS, 2017, 29 (04)
  • [33] Graphene Oxide Wrapped ZnMnO3 Nanorod as Advanced Cathode for Aqueous Zinc-Ion Batteries
    Fan, Zixuan
    Liu, Xinyu
    Qian, Jinchen
    Tang, Jun
    Yu, Jin
    He, Wei
    Sun, Zheng Ming
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [34] Vanadium-glycerate: a novel alcohol oxide cathode material for aqueous zinc-ion batteries
    Zhang, Li
    Khan, Mustafa
    Ming, Kun
    Chen, Ying
    Liu, Junfeng
    Wang, Yong
    IONICS, 2025,
  • [35] Advanced Aqueous Zinc-Ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids
    Mao, Xianxing
    Zhang, Xinyi
    Zeng, Yanfei
    Halima, Ahmed Farid
    Shen, Pei Kang
    ENERGY TECHNOLOGY, 2021, 9 (04)
  • [36] Manifesting the Carrier Behavior of a Vanadium Oxide/Carbon Composite Cathode in Aqueous Zinc-Ion Batteries
    Wang, Deqiang
    Chen, Jiadong
    Liang, Wenhao
    Xue, Geng
    Li, Jun
    Jin, Huile
    Wang, Jichang
    Wang, Shun
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (14): : 5792 - 5800
  • [37] High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries
    Kaveevivitchai, Watchareeya
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (48) : 18737 - 18741
  • [38] Ultrathin δ-MnO2 nanoflakes with Na+ intercalation as a high-capacity cathode for aqueous zinc-ion batteries
    Peng, Haijun
    Fan, Huiqing
    Yang, Chenhui
    Tian, Yapeng
    Wang, Chao
    Sui, Jianan
    RSC ADVANCES, 2020, 10 (30) : 17702 - 17712
  • [39] High-Capacity Calcium Vanadate Composite with Long-Term Cyclability as a Cathode Material for Aqueous Zinc-Ion Batteries
    Narsimulu, Daulatabad
    Shanthappa, Ragammanavara
    Bandi, Hari
    Yu, Jae Su
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (34) : 12571 - 12582
  • [40] 3D printing of customized MnO2 cathode for aqueous zinc-ion batteries
    Liu, Zhen
    He, Han-bing
    Luo, Ze-xiang
    Wang, Xiao-feng
    Zheng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (04) : 1193 - 1204