Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries

被引:36
|
作者
Park, Jin-Sung [1 ]
Wang, Sung Eun [1 ,2 ]
Jung, Dae Soo [2 ]
Lee, Jung-Kul [3 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Ceram Engn & Technol, Energy & Environm Div, Jinju 52851, Gyeongnam, South Korea
[3] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Vanadium nitride; Graphene oxide; Cathode materials; Spray pyrolysis; Zinc-ion batteries; ANODE MATERIAL; CARBON NANOFIBERS; DOPED GRAPHENE; PERFORMANCE; COMPOSITE; KINETICS;
D O I
10.1016/j.cej.2022.137266
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are receiving considerable research highlights owing to their high safety and environment-friendliness. To implement this promising technology for grid-scale energy storage, effective cathode materials with high capacity, cycle stability, and electrochemical kinetics should be developed. Herein, the synthesis of uniquely structured porous VN-reduced graphene oxide composite (VN-rGO) microspheres through a facile spray pyrolysis process and their application as cathodes for ZIBs are introduced. The electro-chemical reaction mechanism of VN-rGO microspheres with zinc ions is investigated through various in situ and ex situ analyses. During the initial charge process, VN phase transforms into the Zn-3(OH)(2)V2O7.2H(2)O (ZVOH) phase. From the second cycle and on, the ZVOH phase undergoes zinc-ion ingress and egress processes. VN-rGO microspheres exhibit an unprecedented high capacity (809 mA h g(-1) at 0.1 A g-1), high energy density (613 W h kg(-1)), and good rate capability (467 mA h g(-1) at 2.0 A g(-1)). The cathode delivers a reversible capacity of 445 mA h g(-1) after 400 cycles at 1.0 A g(-1), which ascertains the robustness of the structure. The 3D porous rGO matrix to which VN nanocrystals are homogenously anchored accelerates the zinc-ion storage kinetics and en-dows the cathode with structural robustness.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Synergetic vanadium oxide nanocomposite cathode material with high specific capacity and long life for advanced aqueous zinc-ion batteries
    Sun, Dong
    Wan, Wan
    Zhang, Meng
    Jin, Yaxuan
    Ma, Weiyan
    Cao, Yali
    Chai, Hui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 969
  • [22] Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries
    Ghulam Ali
    Asad Mehmood
    Heung Yong Ha
    Jaehoon Kim
    Kyung Yoon Chung
    Scientific Reports, 7
  • [23] Synergetic vanadium oxide nanocomposite cathode material with high specific capacity and long life for advanced aqueous zinc-ion batteries
    Sun, Dong
    Wan, Wan
    Zhang, Meng
    Jin, Yaxuan
    Ma, Weiyan
    Cao, Yali
    Chai, Hui
    Journal of Alloys and Compounds, 2023, 969
  • [24] Aluminium-doped vanadium nitride as cathode material for high-performance aqueous zinc-ion batteries
    Chen, Jiangjin
    Guo, Keyan
    Ren, Tianzi
    Feng, Guodong
    Guo, Wen
    Bao, Fuxi
    JOURNAL OF POWER SOURCES, 2025, 626
  • [25] Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries
    Ai, Yuqing
    Pang, Qiang
    Liu, Xinyu
    Xin, Fangyun
    Wang, Hong
    Xing, Mingming
    Fu, Yao
    Tian, Ying
    NANOMATERIALS, 2024, 14 (13)
  • [26] Hexagonal WO3/3D Porous Graphene as a Novel Zinc Intercalation Anode for Aqueous Zinc-Ion Batteries
    Chen, Xingfa
    Huang, Renshu
    Ding, Mingyu
    He, Huibing
    Wang, Fan
    Yin, Shibin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 3961 - 3969
  • [27] Graphene Oxide Wrapped CuV2O6 Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries
    Liu, Yuyi
    Li, Qian
    Ma, Kaixuan
    Yang, Gongzheng
    Wang, Chengxin
    ACS NANO, 2019, 13 (10) : 12081 - 12089
  • [28] A high capacity TeO2 cathode for aqueous zinc-ion batteries
    Si, Jingying
    Lei, Qi
    Zhang, Wei
    Ren, Zhiguo
    Li, Haitao
    Lin, Mengru
    Wen, Wen
    Zhang, Jincang
    Feng, Zhenjie
    Sun, Yuanhe
    Li, Xiaolong
    Zhu, Daming
    MATERIALS LETTERS, 2024, 363
  • [29] Oxygen-deficient ZnVOH@CC as high-capacity and stable cathode for aqueous zinc-ion batteries
    Sun, Dongfei
    Niu, Huanle
    Wang, Zijuan
    Zhang, Tiantian
    Zhou, Xiaozhong
    Zhao, Jingxin
    Lei, Ziqiang
    Xu, Bingang
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [30] Organic Macromolecule regulated the structure of vanadium oxide with high capacity and stability for aqueous Zinc-ion batteries
    Yuan, Tongtong
    Cheng, Haoyan
    Li, Xuerong
    Ren, Hanyu
    Hu, Yibo
    Chen, Haiting
    Zhao, Jianguo
    Dai, Shuge
    Liu, Meilin
    Hu, Hao
    APPLIED SURFACE SCIENCE, 2022, 592