Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries

被引:36
|
作者
Park, Jin-Sung [1 ]
Wang, Sung Eun [1 ,2 ]
Jung, Dae Soo [2 ]
Lee, Jung-Kul [3 ]
Kang, Yun Chan [1 ]
机构
[1] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
[2] Korea Inst Ceram Engn & Technol, Energy & Environm Div, Jinju 52851, Gyeongnam, South Korea
[3] Konkuk Univ, Dept Chem Engn, Seoul 143701, South Korea
基金
新加坡国家研究基金会;
关键词
Vanadium nitride; Graphene oxide; Cathode materials; Spray pyrolysis; Zinc-ion batteries; ANODE MATERIAL; CARBON NANOFIBERS; DOPED GRAPHENE; PERFORMANCE; COMPOSITE; KINETICS;
D O I
10.1016/j.cej.2022.137266
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Aqueous zinc-ion batteries (ZIBs) are receiving considerable research highlights owing to their high safety and environment-friendliness. To implement this promising technology for grid-scale energy storage, effective cathode materials with high capacity, cycle stability, and electrochemical kinetics should be developed. Herein, the synthesis of uniquely structured porous VN-reduced graphene oxide composite (VN-rGO) microspheres through a facile spray pyrolysis process and their application as cathodes for ZIBs are introduced. The electro-chemical reaction mechanism of VN-rGO microspheres with zinc ions is investigated through various in situ and ex situ analyses. During the initial charge process, VN phase transforms into the Zn-3(OH)(2)V2O7.2H(2)O (ZVOH) phase. From the second cycle and on, the ZVOH phase undergoes zinc-ion ingress and egress processes. VN-rGO microspheres exhibit an unprecedented high capacity (809 mA h g(-1) at 0.1 A g-1), high energy density (613 W h kg(-1)), and good rate capability (467 mA h g(-1) at 2.0 A g(-1)). The cathode delivers a reversible capacity of 445 mA h g(-1) after 400 cycles at 1.0 A g(-1), which ascertains the robustness of the structure. The 3D porous rGO matrix to which VN nanocrystals are homogenously anchored accelerates the zinc-ion storage kinetics and en-dows the cathode with structural robustness.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nanoconfined vanadium nitride in 3D porous reduced graphene oxide microspheres as high-capacity cathode for aqueous zinc-ion batteries
    Park, Jin-Sung
    Wang, Sung Eun
    Jung, Dae Soo
    Lee, Jung-Kul
    Kang, Yun Chan
    Chemical Engineering Journal, 2022, 446
  • [2] Granular Vanadium Nitride (VN) Cathode for High-Capacity and Stable Zinc-Ion Batteries
    Rong, Yao
    Chen, Hongzhe
    Wu, Jian
    Yang, Zhanhong
    Deng, Lie
    Fu, Zhimin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (24) : 8649 - 8658
  • [3] Tunable Vanadium Oxide Microflowers as High-Capacity Cathode Materials for Aqueous Rechargeable Zinc-Ion Batteries
    Kidanu, Weldejewergis Gebrewahid
    Lim, Yeeun
    Nguyen, Tuan Loi
    Hur, Jaehyun
    Kim, Il Tae
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 14311 - 14322
  • [4] High-Capacity and Long-Life Manganese Vanadium Oxide Composite as a Cathode for Aqueous Zinc-Ion Batteries
    Narsimulu, D.
    Krishna, B. N. Vamsi
    Shanthappa, R.
    Bandi, Hari
    Yu, Jae Su
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (18)
  • [5] Porous V2O5 microspheres: a high-capacity cathode material for aqueous zinc-ion batteries
    Hu, Ping
    Zhu, Ting
    Ma, Jingxuan
    Cai, Congcong
    Hu, Guangwu
    Wang, Xuanpeng
    Liu, Ziang
    Zhou, Liang
    Mai, Liqiang
    CHEMICAL COMMUNICATIONS, 2019, 55 (58) : 8486 - 8489
  • [6] Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries
    Min Du
    Feng Zhang
    Xiaofei Zhang
    Wentao Dong
    Yuanhua Sang
    Jianjun Wang
    Hong Liu
    Shuhua Wang
    Science China Chemistry, 2020, 63 : 1767 - 1776
  • [7] Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries
    Min Du
    Feng Zhang
    Xiaofei Zhang
    Wentao Dong
    Yuanhua Sang
    Jianjun Wang
    Hong Liu
    Shuhua Wang
    Science China(Chemistry), 2020, 63 (12) : 1767 - 1776
  • [8] Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries
    Du, Min
    Zhang, Feng
    Zhang, Xiaofei
    Dong, Wentao
    Sang, Yuanhua
    Wang, Jianjun
    Liu, Hong
    Wang, Shuhua
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (12) : 1767 - 1776
  • [9] Calcium ion pinned vanadium oxide cathode for high-capacity and long-life aqueous rechargeable zinc-ion batteries
    Min Du
    Feng Zhang
    Xiaofei Zhang
    Wentao Dong
    Yuanhua Sang
    Jianjun Wang
    Hong Liu
    Shuhua Wang
    Science China(Chemistry), 2020, (12) : 1767 - 1776
  • [10] Macroporous vanadium dioxide-reduced graphene oxide microspheres: Cathode material with enhanced electrochemical kinetics for aqueous zinc-ion batteries
    Choi, Jae Hun
    Park, Jin-Sung
    Kang, Yun Chan
    APPLIED SURFACE SCIENCE, 2022, 599