Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

被引:4
|
作者
Jaleel, Hassan [1 ]
Shamma, Jeff S. [2 ]
机构
[1] Lahore Univ Management Sci, Syed Babar Ali Sch Sci & Engn, Dept Elect Engn, Intelligent Machines & Sociotech Syst Lab, Lahore 54792, Pakistan
[2] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Robot Intelligent Syst & Control Lab, Thuwal 239556900, Saudi Arabia
关键词
Markov processes; Games; Steady-state; Stability criteria; Noise measurement; Decision making; Transient analysis; Learning in games; multiagent system; stochastic system; SMALL TRANSITION-PROBABILITIES; MARKOV-CHAINS; GENERAL DOMAIN; EXIT PROBLEM; CONVERGENCE; EQUILIBRIUM; METROPOLIS; ALGORITHMS;
D O I
10.1109/TAC.2020.3039485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic stability is an important solution concept for stochastic learning dynamics in games. However, a limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We identify this limitation and develop a framework for the comparative analysis of the transient behavior of stochastic learning dynamics. We present the framework in the context of two learning dynamics: Log-linear learning (LLL) and Metropolis learning (ML). Although both of these dynamics lead to the same steady-state behavior, they correspond to different behavioral models for decision making. In this article, we propose multiple criteria to analyze and quantify the differences in the short and medium-run behaviors of stochastic dynamics. We derive upper bounds on the expected hitting time of the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the behavior of the two dynamics.
引用
收藏
页码:5253 / 5268
页数:16
相关论文
共 50 条
  • [41] From Timed Automata to Stochastic Hybrid Games Model Checking, Synthesis, Performance Analysis and Machine Learning
    Larsen, Kim G.
    Fahrenberg, Uli
    Legay, Axel
    DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2017, 50 : 60 - 103
  • [42] Stability Analysis of Semi-Markov Jump Stochastic Nonlinear Systems
    Wu, Xiaotai
    Shi, Peng
    Tang, Yang
    Mao, Shuai
    Qian, Feng
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) : 2084 - 2091
  • [43] Stochastic Control Approach to Reputation Games
    Dalkiran, Nuh Aygun
    Yuksel, Serdar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4710 - 4725
  • [44] Coalitional stochastic stability
    Newton, Jonathan
    GAMES AND ECONOMIC BEHAVIOR, 2012, 75 (02) : 842 - 854
  • [45] Comparison of algorithms for simple stochastic games
    Kretinsky, Jan
    Ramneantu, Emanuel
    Slivinskiy, Alexander
    Weininger, Maximilian
    INFORMATION AND COMPUTATION, 2022, 289
  • [46] Two Timescales in Stochastic Evolutionary Games
    Lessard, Sabin
    DYNAMIC GAMES AND APPLICATIONS, 2025,
  • [47] Concurrent Stochastic Lossy Channel Games
    Stan, Daniel
    Najib, Muhammad
    Lin, Anthony Widjaja
    Abdulla, Parosh Aziz
    32ND EACSL ANNUAL CONFERENCE ON COMPUTER SCIENCE LOGIC, CSL 2024, 2024, 288
  • [48] Robust stochastic stability
    Carlos Alós-Ferrer
    Nick Netzer
    Economic Theory, 2015, 58 : 31 - 57
  • [49] Stochastic Games with General Payoff Functions
    Flesch, Janos
    Solan, Eilon
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (03) : 1349 - 1371
  • [50] Coalitional Stochastic Differential Games for Networks
    Barreiro-Gomez, Julian
    Zhu, Quanyan
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2707 - 2712