Path to Stochastic Stability: Comparative Analysis of Stochastic Learning Dynamics in Games

被引:4
|
作者
Jaleel, Hassan [1 ]
Shamma, Jeff S. [2 ]
机构
[1] Lahore Univ Management Sci, Syed Babar Ali Sch Sci & Engn, Dept Elect Engn, Intelligent Machines & Sociotech Syst Lab, Lahore 54792, Pakistan
[2] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div, Robot Intelligent Syst & Control Lab, Thuwal 239556900, Saudi Arabia
关键词
Markov processes; Games; Steady-state; Stability criteria; Noise measurement; Decision making; Transient analysis; Learning in games; multiagent system; stochastic system; SMALL TRANSITION-PROBABILITIES; MARKOV-CHAINS; GENERAL DOMAIN; EXIT PROBLEM; CONVERGENCE; EQUILIBRIUM; METROPOLIS; ALGORITHMS;
D O I
10.1109/TAC.2020.3039485
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Stochastic stability is an important solution concept for stochastic learning dynamics in games. However, a limitation of this solution concept is its inability to distinguish between different learning rules that lead to the same steady-state behavior. We identify this limitation and develop a framework for the comparative analysis of the transient behavior of stochastic learning dynamics. We present the framework in the context of two learning dynamics: Log-linear learning (LLL) and Metropolis learning (ML). Although both of these dynamics lead to the same steady-state behavior, they correspond to different behavioral models for decision making. In this article, we propose multiple criteria to analyze and quantify the differences in the short and medium-run behaviors of stochastic dynamics. We derive upper bounds on the expected hitting time of the set of Nash equilibria for both LLL and ML. For the medium to long-run behavior, we identify a set of tools from the theory of perturbed Markov chains that result in a hierarchical decomposition of the state space into collections of states called cycles. We compare LLL and ML based on the proposed criteria and develop invaluable insights into the behavior of the two dynamics.
引用
收藏
页码:5253 / 5268
页数:16
相关论文
共 50 条
  • [31] A survey of stochastic ω-regular games
    Chatterjee, Krishnendu
    Henzinger, Thomas A.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (02) : 394 - 413
  • [32] Automatizability and Simple Stochastic Games
    Huang, Lei
    Pitassi, Toniann
    AUTOMATA, LANGUAGES AND PROGRAMMING, ICALP, PT I, 2011, 6755 : 605 - 617
  • [33] Games of competition in a stochastic environment
    Avrahami, J
    Güth, W
    Kareev, Y
    THEORY AND DECISION, 2005, 59 (04) : 255 - 294
  • [34] An epistemic approach to stochastic games
    Perea, Andres
    Predtetchinski, Arkadi
    INTERNATIONAL JOURNAL OF GAME THEORY, 2019, 48 (01) : 181 - 203
  • [35] Distributed No-Regret Learning for Stochastic Aggregative Games over Networks
    Lei, Jinlong
    Yi, Peng
    Li, Li
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7512 - 7519
  • [36] Decentralized Learning for Optimality in Stochastic Dynamic Teams and Games With Local Control and Global State Information
    Yongacoglu, Bora
    Arslan, Gurdal
    Yuksel, Serdar
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (10) : 5230 - 5245
  • [37] Stability analysis for neutral stochastic linear system
    Li, Boren
    Liu, Xueliang
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (16) : 2474 - 2481
  • [38] QUANTITATIVE STABILITY ANALYSIS OF STOCHASTIC GENERALIZED EQUATIONS
    Liu, Yongchao
    Roemisch, Werner
    Xu, Huifu
    SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (01) : 467 - 497
  • [39] Stability analysis for stochastic hybrid systems: A survey
    Teel, Andrew R.
    Subbaraman, Anantharaman
    Sferlazza, Antonino
    AUTOMATICA, 2014, 50 (10) : 2435 - 2456
  • [40] Analysis of Stochastic Approximation Schemes With Set-Valued Maps in the Absence of a Stability Guarantee and Their Stabilization
    Yaji, Vinayaka G.
    Bhatnagar, Shalabh
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) : 1100 - 1115