Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN

被引:92
|
作者
Xiao, Jingren [1 ]
Yang, Tengfei [1 ]
Wang, Chenxu [1 ]
Xue, Jianming [1 ]
Wang, Yugang [1 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX PHASES; DAMAGE; AMORPHIZATION; IRRADIATION; RESISTANCE; CERAMICS; CARBIDE; POINTS; SOLIDS; NACL;
D O I
10.1111/jace.13450
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanolaminated M(n+1)AX(n) phases as candidate materials for next generation nuclear reactor applications show great potential in tolerating radiation damage. However, different M(n+1)AX(n) materials behave very differently when exposed to energetic neutron and ion irradiations. Based on first-principle calculations, the radiation tolerance of two M(3)AX(2) and four M(2)AX phases were studied in this work, covering all the M(n+1)AX(n) phases previously investigated with experiments. We have calculated the formation energies of Frenkel pairs and antisite pairs in these materials. The improved radiation tolerance from Ti3AlC2 to Ti2AlC observed by experiments can be understood in terms of different Al/TiC layer ratio as the A atomic plane in the nanolaminated crystal M(n+1)AX(n) accommodates radiation-induced point defects. The formation of M-A-A(M) antisite pair in M(n+1)AX(n) materials would provide an alternative way to accommodate the defects resulted from radiation damage cascades, whereas this ideal substitution channel does not exist for Cr2GeC due to its pronouncedly higher M-A-A(M) antisite pair formation energy. To further elucidate their radiation damage tolerance mechanism, we have made a detailed analysis on their interatomic M-X, M-A, and X-A bonding characters. Criteria based on the bonding analysis are proposed to assess the radiation tolerance of the six M(n+1)AX(n) materials, which can be further applied to explore other M(n+1)AX(n) phases with respect to their performances under radiation environment.
引用
收藏
页码:1323 / 1331
页数:9
相关论文
共 50 条
  • [31] Dielectric properties of Ti2AlC and Ti2AlN MAX phases:: The conductivity anisotropy
    Haddad, Noel
    Garcia-Caurel, Enric
    Hultman, Lars
    Barsoum, Michel W.
    Hug, Gilles
    JOURNAL OF APPLIED PHYSICS, 2008, 104 (02)
  • [32] Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics:a Review
    X.H.Wang and Y.C.Zhou Shenyang National Laboratory for Materials Science
    JournalofMaterialsScience&Technology, 2010, 26 (05) : 385 - 416
  • [33] Preparation of Bulk Ti2AlC Using Ti3AlC2 Powders as a Starting Material
    Chen, Xinhua
    Zhai, Hongxiang
    Li, Shibo
    Zhou, Yang
    Huang, Zhenying
    CHINESE CERAMICS COMMUNICATIONS, 2010, 105-106 : 83 - 86
  • [34] Layered Machinable and Electrically Conductive Ti2AlC and Ti3AlC2 Ceramics: a Review
    Wang, X. H.
    Zhou, Y. C.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (05) : 385 - 416
  • [35] First-Principles Study of Vacancies in Ti3SiC2 and Ti3AlC2
    Wang, Hui
    Han, Han
    Yin, Gen
    Wang, Chang-Ying
    Hou, Yu-Yang
    Tang, Jun
    Dai, Jian-Xing
    Ren, Cui-Lan
    Zhang, Wei
    Huai, Ping
    MATERIALS, 2017, 10 (02)
  • [36] Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases
    Plummer, Gabriel
    Tucker, Garritt J.
    PHYSICAL REVIEW B, 2019, 100 (21)
  • [37] Irradiation resistance of MAX phases Ti3SiC2 and Ti3AlC2: Characterization and comparison
    Huang, Qing
    Liu, Renduo
    Lei, Guanhong
    Huang, Hefei
    Li, Jianjian
    He, Suixia
    Li, Dehui
    Yan, Long
    Zhou, Jie
    Huang, Qing
    JOURNAL OF NUCLEAR MATERIALS, 2015, 465 : 640 - 647
  • [38] Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2
    Zhang H.B.
    Zhou Y.C.
    Bao Y.W.
    Li M.S.
    Journal of Materials Research, 2006, 21 (09) : 2401 - 2407
  • [39] Anisotropic corrosion of Ti2AlC and Ti3AlC2 in supercritical water at 500 °C
    Du, Yina
    Liu, Ji-Xuan
    Gu, Yifeng
    Wang, Xin-Gang
    Xu, Fangfang
    Zhang, Guo-Jun
    CERAMICS INTERNATIONAL, 2017, 43 (09) : 7166 - 7171
  • [40] 微波反应快速合成Ti3AlC2和Ti2AlC材料
    梁宝岩
    王艳芝
    张旺玺
    徐世帅
    陶瓷学报, 2015, 36 (05) : 476 - 480