Investigations on Radiation Tolerance of Mn+1AXn Phases: Study of Ti3SiC2, Ti3AlC2, Cr2AlC, Cr2GeC, Ti2AlC, and Ti2AlN

被引:92
|
作者
Xiao, Jingren [1 ]
Yang, Tengfei [1 ]
Wang, Chenxu [1 ]
Xue, Jianming [1 ]
Wang, Yugang [1 ]
机构
[1] Peking Univ, Ctr Appl Phys & Technol, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
MAX PHASES; DAMAGE; AMORPHIZATION; IRRADIATION; RESISTANCE; CERAMICS; CARBIDE; POINTS; SOLIDS; NACL;
D O I
10.1111/jace.13450
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanolaminated M(n+1)AX(n) phases as candidate materials for next generation nuclear reactor applications show great potential in tolerating radiation damage. However, different M(n+1)AX(n) materials behave very differently when exposed to energetic neutron and ion irradiations. Based on first-principle calculations, the radiation tolerance of two M(3)AX(2) and four M(2)AX phases were studied in this work, covering all the M(n+1)AX(n) phases previously investigated with experiments. We have calculated the formation energies of Frenkel pairs and antisite pairs in these materials. The improved radiation tolerance from Ti3AlC2 to Ti2AlC observed by experiments can be understood in terms of different Al/TiC layer ratio as the A atomic plane in the nanolaminated crystal M(n+1)AX(n) accommodates radiation-induced point defects. The formation of M-A-A(M) antisite pair in M(n+1)AX(n) materials would provide an alternative way to accommodate the defects resulted from radiation damage cascades, whereas this ideal substitution channel does not exist for Cr2GeC due to its pronouncedly higher M-A-A(M) antisite pair formation energy. To further elucidate their radiation damage tolerance mechanism, we have made a detailed analysis on their interatomic M-X, M-A, and X-A bonding characters. Criteria based on the bonding analysis are proposed to assess the radiation tolerance of the six M(n+1)AX(n) materials, which can be further applied to explore other M(n+1)AX(n) phases with respect to their performances under radiation environment.
引用
收藏
页码:1323 / 1331
页数:9
相关论文
共 50 条
  • [21] Mechanical and oxidation behavior of textured Ti2AlC and Ti3AlC2 MAX phase materials
    Li, Xiaoqiang
    Xie, Xi
    Gonzalez-Julian, Jesus
    Malzbender, Juergen
    Yang, Rui
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5258 - 5271
  • [22] High-Energy Mechanical Grinding to Produce Cr2AlC and Ti2AlC Max Phases
    Yu.M. Solonin
    M.P. Savyak
    M.A. Vasilkivska
    V.I. Ivchenko
    Powder Metallurgy and Metal Ceramics, 2021, 60 : 259 - 267
  • [23] Sinterability, Mechanical Properties and Wear Behavior of Ti3SiC2 and Cr2AlC MAX Phases
    Tabares, Eduardo
    Kitzmantel, Michael
    Neubauer, Erich
    Jimenez-Morales, Antonia
    Tsipas, Sophia A.
    CERAMICS-SWITZERLAND, 2022, 5 (01): : 55 - 74
  • [24] Comparison of corrosion behavior of Ti3SiC2 and Ti3AlC2 in NaCl solutions with Ti
    Zhu, M.
    Wang, R.
    Chen, C.
    Zhang, H. B.
    Zhang, G. J.
    CERAMICS INTERNATIONAL, 2017, 43 (07) : 5708 - 5714
  • [25] An experimental and theoretical study of the hydrogen resistance of Ti3SiC2 and Ti3AlC2
    Xu, Canhui
    Zhang, Haibin
    Hu, Shuanglin
    Chen, Chen
    Zhou, Xiaosong
    Peng, Shuming
    Xiao, Haiyan
    Gao, Xingyu
    CORROSION SCIENCE, 2018, 142 : 295 - 304
  • [26] First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2
    Togo, Atsushi
    Chaput, Laurent
    Tanaka, Isao
    Hug, Gilles
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [27] Fabrication and characterization of NiTi/Ti3SiC2 and NiTi/Ti2AlC composites
    Hu, Liangfa
    Kothalkar, Ankush
    Proust, Gwenaelle
    Karaman, Ibrahim
    Radovic, Miladin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 610 : 635 - 644
  • [28] Thermophysical properties of porous Ti2AlC and Ti3SiC2 produced by powder metallurgy
    Tsipas, S. A.
    Tabares, E.
    Weissgaerber, Thomas
    Hutsch, Thomas
    Sket, Federico
    Velasco, B.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 857
  • [29] Pressureless sintering kinetics analysis of Ti3SiC2 and Ti2AlC powdered MAX phases
    Gallego, Jose M. Cordoba
    DISCOVER MATERIALS, 2024, 4 (01):
  • [30] Tailoring Magnetic Properties of MAX Phases, a Theoretical Investigation of (Cr2Ti)AlC2 and Cr2AlC
    Wang, Jiemin
    Liu, Zhimou
    Zhang, Haibin
    Wang, Jingyang
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (10) : 3371 - 3375