Graphics processing unit implementations of relative expression analysis algorithms enable dramatic computational speedup

被引:7
作者
Magis, Andrew T. [1 ]
Earls, John C. [2 ]
Ko, Youn-Hee [2 ]
Eddy, James A. [3 ]
Price, Nathan D. [1 ,4 ]
机构
[1] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
[4] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
基金
美国国家卫生研究院;
关键词
CLASSIFICATION; CANCERS; CELL;
D O I
10.1093/bioinformatics/btr033
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
SUMMARY: The top-scoring pair (TSP) and top-scoring triplet (TST) algorithms are powerful methods for classification from expression data, but analysis of all combinations across thousands of human transcriptome samples is computationally intensive, and has not yet been achieved for TST. Implementation of these algorithms for the graphics processing unit results in dramatic speedup of two orders of magnitude, greatly increasing the searchable combinations and accelerating the pace of discovery. AVAILABILITY: http://www.igb.illinois.edu/labs/price/downloads/. CONTACT: ndprice@illinois.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
引用
收藏
页码:872 / 873
页数:2
相关论文
共 13 条
[1]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[2]   Stem cell transcriptome profiling via massive-scale mRNA sequencing [J].
Cloonan, Nicole ;
Forrest, Alistair R. R. ;
Kolle, Gabriel ;
Gardiner, Brooke B. A. ;
Faulkner, Geoffrey J. ;
Brown, Mellissa K. ;
Taylor, Darrin F. ;
Steptoe, Anita L. ;
Wani, Shivangi ;
Bethel, Graeme ;
Robertson, Alan J. ;
Perkins, Andrew C. ;
Bruce, Stephen J. ;
Lee, Clarence C. ;
Ranade, Swati S. ;
Peckham, Heather E. ;
Manning, Jonathan M. ;
McKernan, Kevin J. ;
Grimmond, Sean M. .
NATURE METHODS, 2008, 5 (07) :613-619
[3]   Relative Expression Analysis for Molecular Cancer Diagnosis and Prognosis [J].
Eddy, James A. ;
Sung, Jaeyun ;
Geman, Donald ;
Price, Nathan D. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2010, 9 (02) :149-159
[4]  
Geman Donald, 2004, Stat Appl Genet Mol Biol, V3, pArticle19
[5]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[6]   The tspair package for finding top scoring pair classifiers in R [J].
Leek, Jeffrey T. .
BIOINFORMATICS, 2009, 25 (09) :1203-1204
[7]   The ordering of expression among a few genes can provide simple cancer biomarkers and signal BRCA1 mutations [J].
Lin, Xue ;
Afsari, Bahman ;
Marchionni, Luigi ;
Cope, Leslie ;
Parmigiani, Giovanni ;
Naiman, Daniel ;
Geman, Donald .
BMC BIOINFORMATICS, 2009, 10 :256
[8]   Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas [J].
Price, Nathan D. ;
Trent, Jonathan ;
El-Naggar, Adel K. ;
Cogdell, David ;
Taylor, Ellen ;
Hunt, Kelly K. ;
Pollock, Raphael E. ;
Hood, Leroy ;
Shmulevich, Ilya ;
Zhang, Wei .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (09) :3414-3419
[9]   GPU-accelerated molecular modeling coming of age [J].
Stone, John E. ;
Hardy, David J. ;
Ufimtsev, Ivan S. ;
Schulten, Klaus .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2010, 29 (02) :116-125
[10]   Accelerating advanced MRI reconstructions on GPUs [J].
Stone, S. S. ;
Haldar, J. P. ;
Tsao, S. C. ;
Hwu, W. -m. W. ;
Sutton, B. P. ;
Liang, Z. -P. .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (10) :1307-1318