A Deep Visual Correspondence Embedding Model for Stereo Matching Costs

被引:140
|
作者
Chen, Zhuoyuan [1 ]
Sun, Xun [1 ]
Wang, Liang [1 ]
Yu, Yinan [2 ]
Huang, Chang [2 ]
机构
[1] Baidu Res Inst Deep Learning, Beijing, Peoples R China
[2] Horizon Robot, Beijing, Peoples R China
关键词
LOCAL STEREO;
D O I
10.1109/ICCV.2015.117
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a data-driven matching cost for stereo matching. A novel deep visual correspondence embedding model is trained via Convolutional Neural Network on a large set of stereo images with ground truth disparities. This deep embedding model leverages appearance data to learn visual similarity relationships between corresponding image patches, and explicitly maps intensity values into an embedding feature space to measure pixel dissimilarities. Experimental results on KITTI and Middlebury data sets demonstrate the effectiveness of our model. First, we prove that the new measure of pixel dissimilarity outperforms traditional matching costs. Furthermore, when integrated with a global stereo framework, our method ranks top 3 among all two-frame algorithms on the KITTI benchmark. Finally, cross-validation results show that our model is able to make correct predictions for unseen data which are outside of its labeled training set.
引用
收藏
页码:972 / 980
页数:9
相关论文
共 50 条
  • [1] Stereo matching algorithm based on the combination of matching costs
    Wang Ende
    Zhu Yalong
    Peng Liangyu
    Li Yijun
    Wu Tianyao
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 1001 - 1004
  • [2] Matching Cost Filtering for Dense Stereo Correspondence
    Lin, Yimin
    Lu, Naiguang
    Lou, Xiaoping
    Zou, Fang
    Yao, Yanbin
    Du, Zhaocai
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [3] Stereo Matching for Calibrated Cameras without Correspondence
    Helmke, U.
    Hueper, K.
    Vences, L.
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 2408 - 2413
  • [4] A Fast Block Matching Algorthim for Stereo Correspondence
    Tao, Tangfei
    Koo, Ja Choon
    Choi, Hyouk Ryeol
    2008 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 215 - 218
  • [5] UNSUPERVISED STEREO MATCHING USING CORRESPONDENCE CONSISTENCY
    Joung, Sunghun
    Kim, Seungryong
    Ham, Bumsub
    Sohn, Kwanghoon
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2518 - 2522
  • [6] Adaptive Neighbor Embedding for Efficient Stereo Matching
    Chong, Ai-Xin
    Yin, Hui
    Wan, Jin
    Liu, Yan-Ting
    Du, Qian-Qian
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2449 - 2458
  • [7] Stereo correspondence using geometric relational matching
    Sharghi, S
    Kamangar, F
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 582 - 592
  • [8] A gradient algorithm for stereo matching without correspondence
    Zhou, J
    Ghosh, BK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1996, 41 (11) : 1671 - 1676
  • [9] An Evaluation Of Multiwavelet Families For Stereo Correspondence Matching
    Zadeh, Pooneh Bagheri
    Serdean, Cristian V.
    ICDT 2011: THE SIXTH INTERNATIONAL CONFERENCE ON DIGITAL TELECOMMUNICATIONS, 2011, : 41 - 45
  • [10] Stereo Matching Of Remote Sensing Images Using Deep Stereo Matching
    Chen, Mang
    Briffa, Johann A.
    Valentino, Gianluca
    Farrugia, Reuben A.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862