Guidelines for clinical interpretation of variant pathogenicity using RNA phenotypes

被引:15
作者
Smirnov, Dmitrii [1 ,2 ]
Schlieben, Lea D. [1 ,2 ]
Peymani, Fatemeh [1 ,2 ]
Berutti, Riccardo [1 ,2 ]
Prokisch, Holger [1 ,2 ]
机构
[1] Tech Univ Munich, Inst Human Genet, Sch Med, Munich, Germany
[2] Helmholtz Zentrum Munchen, Inst Neurogenom, Computat Hlth Ctr, Neuherberg, Germany
关键词
guidelines; rare disorders; RNA sequencing; variant interpretation; CLINVAR PUBLIC ARCHIVE; DISEASE; RARE;
D O I
10.1002/humu.24416
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Over the last 5 years, RNA sequencing (RNA-seq) has been established and is increasingly applied as an effective approach complementary to DNA sequencing in molecular diagnostics. Currently, three RNA phenotypes, aberrant expression, aberrant splicing, and allelic imbalance, are considered to provide information about pathogenic variants. By providing a high-throughput, transcriptome-wide functional readout on variants causing aberrant RNA phenotypes, RNA-seq has increased diagnostic rates by about 15% over whole-exome sequencing. This breakthrough encouraged the development of computational tools and pipelines aiming to streamline RNA-seq analysis for implementation in clinical diagnostics. Although a number of studies showed the added value of RNA-seq for the molecular diagnosis of individuals with Mendelian disorders, there is no formal consensus on assessing variant pathogenicity strength based on RNA phenotypes. Taking RNA-seq as a functional assay for genetic variants, we evaluated the value of statistical significance and effect size of RNA phenotypes as evidence for the strength of variant pathogenicity. This was determined by the analysis of 394 pathogenic variants, of which 198 were associated with aberrant RNA phenotypes and 723 benign variants. Overall, this study seeks to establish recommendations for integrating functional RNA-seq data into the the American College of Medical Genetics and Genomics and the Association for Molecular Pathology guidelines classification system.
引用
收藏
页码:1056 / 1070
页数:15
相关论文
共 52 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]   Genomic imprinting: employing and avoiding epigenetic processes [J].
Bartolomei, Marisa S. .
GENES & DEVELOPMENT, 2009, 23 (18) :2124-2133
[3]   Impact of regulatory variation from RNA to protein [J].
Battle, Alexis ;
Khan, Zia ;
Wang, Sidney H. ;
Mitrano, Amy ;
Ford, Michael J. ;
Pritchard, Jonathan K. ;
Gilad, Yoav .
SCIENCE, 2015, 347 (6222) :664-667
[4]   Identification of rare and common regulatory variants in pluripotent cells using population-scale transcriptomics [J].
Bonder, Marc Jan ;
Smail, Craig ;
Gloudemans, Michael J. ;
Fresard, Laure ;
Jakubosky, David ;
D'Antonio, Matteo ;
Li, Xin ;
Ferraro, Nicole M. ;
Carcamo-Orive, Ivan ;
Mirauta, Bogdan ;
Seaton, Daniel D. ;
Cai, Na ;
Vakili, Dara ;
Horta, Danilo ;
Zhao, Chunli ;
Zastrow, Diane B. ;
Bonner, Devon E. ;
Wheeler, Matthew T. ;
Kilpinen, Helena ;
Knowles, Joshua W. ;
Smith, Erin N. ;
Frazer, Kelly A. ;
Montgomery, Stephen B. ;
Stegle, Oliver .
NATURE GENETICS, 2021, 53 (03) :313-+
[5]   Adapting ACMG/AMP sequence variant classification guidelines for single-gene copy number variants [J].
Brandt, Tracy ;
Sack, Laura M. ;
Arjona, Dolores ;
Tan, Duanjun ;
Mei, Hui ;
Cui, Hong ;
Gao, Hua ;
Bean, Lora J. H. ;
Ankala, Arunkanth ;
Del Gaudio, Daniela ;
Knight Johnson, Amy ;
Vincent, Lisa M. ;
Reavey, Caitlin ;
Lai, Amy ;
Richard, Gabriele ;
Meck, Jeanne M. .
GENETICS IN MEDICINE, 2020, 22 (02) :336-344
[6]   OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed Genes in RNA Sequencing Data [J].
Brechtmann, Felix ;
Mertes, Christian ;
Matuseviciute, Agne ;
Yepez, Vicente A. ;
Avsec, Ziga ;
Herzog, Maximilian ;
Bader, Daniel M. ;
Prokisch, Holger ;
Gagneur, Julien .
AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 103 (06) :907-917
[7]   Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework [J].
Brnich, Sarah E. ;
Abou Tayoun, Ahmad N. ;
Couch, Fergus J. ;
Cutting, Garry R. ;
Greenblatt, Marc S. ;
Heinen, Christopher D. ;
Kanavy, Dona M. ;
Luo, Xi ;
McNulty, Shannon M. ;
Starita, Lea M. ;
Tavtigian, Sean, V ;
Wright, Matt W. ;
Harrison, Steven M. ;
Biesecker, Leslie G. ;
Berg, Jonathan S. ;
Brenner, Steven E. ;
Ellard, Sian ;
Karbassi, Izabela ;
Karchin, Rachel ;
Mester, Jessica L. ;
O'Donnell-Luria, Anne ;
Pesaran, Tina ;
Plon, Sharon E. ;
Rehm, Heidi ;
Topper, Scott .
GENOME MEDICINE, 2019, 12 (01)
[8]   Quantifying the potential of functional evidence to reclassify variants of uncertain significance in the categorical and Bayesian interpretation frameworks [J].
Brnich, Sarah E. ;
Rivera-Munoz, Edgar A. ;
Berg, Jonathan S. .
HUMAN MUTATION, 2018, 39 (11) :1531-1541
[9]   Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs [J].
Burke, Emily E. ;
Chenoweth, Joshua G. ;
Shin, Joo Heon ;
Collado-Torres, Leonardo ;
Kim, Suel-Kee ;
Micali, Nicola ;
Wang, Yanhong ;
Colantuoni, Carlo ;
Straub, Richard E. ;
Hoeppner, Daniel J. ;
Chen, Huei-Ying ;
Sellers, Alana ;
Shibbani, Kamel ;
Hamersky, Gregory R. ;
Bustamante, Marcelo Diaz ;
Phan, BaDoi N. ;
Ulrich, William S. ;
Valencia, Cristian ;
Jaishankar, Amritha ;
Price, Amanda J. ;
Rajpurohit, Anandita ;
Semick, Stephen A. ;
Burli, Roland W. ;
Barrow, James C. ;
Hiler, Daniel J. ;
Page, Stephanie C. ;
Martinowich, Keri ;
Hyde, Thomas M. ;
Kleinman, Joel E. ;
Berman, Karen F. ;
Apud, Jose A. ;
Cross, Alan J. ;
Brandon, Nicholas J. ;
Weinberger, Daniel R. ;
Maher, Brady J. ;
McKay, Ronald D. G. ;
Jaffe, Andrew E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]   Listening to silence and understanding nonsense: Exonic mutations that affect splicing [J].
Cartegni, L ;
Chew, SL ;
Krainer, AR .
NATURE REVIEWS GENETICS, 2002, 3 (04) :285-298