Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity

被引:8
作者
Antontsev, Stanislav [1 ,2 ,3 ]
Shmarev, Sergey [4 ]
机构
[1] Univ Lisbon, CMAF CIO, Lisbon, Portugal
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Lavrentyev Inst Hydrodynam SB RAS, Novosibirsk, Russia
[4] Univ Oviedo, Math Dept, C Federico Garcia Lorca 18, Oviedo 33007, Spain
关键词
Singular parabolic equation; Variable nonlinearity; Higher regularity; Strong solutions; HIGHER REGULARITY; P(X; SYSTEMS; CONTINUITY;
D O I
10.1016/j.na.2019.111724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogeneous Dirichlet problem for the equation u(t) = div ((epsilon(2) + vertical bar del u vertical bar(2))p(x,t) 2/2 del u) + f(x, t), epsilon >= 0, (0.1) in the cylinder Q(T) = Omega x (0, T), Omega subset of R-d, d >= 2, with the variable exponent 2d/d+2 < p(-) <= p(x, t) <= p(+) <= 2, p(+/-) = const. We find sufficient conditions on p, partial derivative Omega, f and u(x, 0) which provide the existence of solutions with the following global regularity properties: u(t) is an element of L-infinity(0, T; L-2(Omega)), vertical bar del u vertical bar is an element of C-0([0, T]; L-2(Omega)), vertical bar u(t)vertical bar(p/p-1), vertical bar u(xixj)vertical bar(p), vertical bar del(ut)vertical bar(p), (epsilon(2) + vertical bar del u vertical bar(2))(p-2/2)vertical bar u(xixj)vertical bar(2) is an element of L-1(Q(T)), p - p(x, t), i, j - 1, 2, ..., d. For the solutions of the stationary counterpart of Eq. (0.1), div (epsilon(2) + vertical bar del v vertical bar(2))(p0(x)-2/2) del v) = Phi(x) in Omega, v = 0 on partial derivative Omega, the inclusions vertical bar v(xixj)vertical bar(p0), (epsilon(2) + vertical bar del v vertical bar(2))(p0-2/2)vertical bar v(xixj)vertical bar(2) is an element of L-1(Omega) are established. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 30 条
  • [11] Holder estimates for parabolic p(x, t)-Laplacian systems
    Boegelein, Verena
    Duzaar, Frank
    [J]. MATHEMATISCHE ANNALEN, 2012, 354 (03) : 907 - 938
  • [12] Second order regularity for the p(x)-Laplace operator
    Challal, S.
    Lyaghfouri, A.
    [J]. MATHEMATISCHE NACHRICHTEN, 2011, 284 (10) : 1270 - 1279
  • [13] Crispo F, 2013, ADV DIFFERENTIAL EQU, V18, P849
  • [14] High regularity of the solution to the singular elliptic p(.)-Laplacian system
    Crispo, Francesca
    Grisanti, Carlo R.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190 (190)
  • [15] On the global W2,q regularity for nonlinear N-systems of the p-Laplacian type in n space variables
    da Veiga, H. Beirao
    Crispo, F.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (11) : 4346 - 4354
  • [16] H2 regularity for the p(x)-Laplacian in two-dimensional convex domains
    Del Pezzo, Leandro M.
    Martinez, Sandra
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 939 - 952
  • [17] Monotone operator theory for unsteady problems in variable exponent spaces
    Diening, L.
    Naegele, P.
    Ruzicka, M.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) : 1209 - 1231
  • [18] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [19] Gilbarg D., 1977, Elliptic partial differential equations of second order
  • [20] Ladyzhenskaya O. A., 1964, Linear and Quasilinear Elliptic Equations