Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity

被引:8
作者
Antontsev, Stanislav [1 ,2 ,3 ]
Shmarev, Sergey [4 ]
机构
[1] Univ Lisbon, CMAF CIO, Lisbon, Portugal
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Lavrentyev Inst Hydrodynam SB RAS, Novosibirsk, Russia
[4] Univ Oviedo, Math Dept, C Federico Garcia Lorca 18, Oviedo 33007, Spain
关键词
Singular parabolic equation; Variable nonlinearity; Higher regularity; Strong solutions; HIGHER REGULARITY; P(X; SYSTEMS; CONTINUITY;
D O I
10.1016/j.na.2019.111724
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogeneous Dirichlet problem for the equation u(t) = div ((epsilon(2) + vertical bar del u vertical bar(2))p(x,t) 2/2 del u) + f(x, t), epsilon >= 0, (0.1) in the cylinder Q(T) = Omega x (0, T), Omega subset of R-d, d >= 2, with the variable exponent 2d/d+2 < p(-) <= p(x, t) <= p(+) <= 2, p(+/-) = const. We find sufficient conditions on p, partial derivative Omega, f and u(x, 0) which provide the existence of solutions with the following global regularity properties: u(t) is an element of L-infinity(0, T; L-2(Omega)), vertical bar del u vertical bar is an element of C-0([0, T]; L-2(Omega)), vertical bar u(t)vertical bar(p/p-1), vertical bar u(xixj)vertical bar(p), vertical bar del(ut)vertical bar(p), (epsilon(2) + vertical bar del u vertical bar(2))(p-2/2)vertical bar u(xixj)vertical bar(2) is an element of L-1(Q(T)), p - p(x, t), i, j - 1, 2, ..., d. For the solutions of the stationary counterpart of Eq. (0.1), div (epsilon(2) + vertical bar del v vertical bar(2))(p0(x)-2/2) del v) = Phi(x) in Omega, v = 0 on partial derivative Omega, the inclusions vertical bar v(xixj)vertical bar(p0), (epsilon(2) + vertical bar del v vertical bar(2))(p0-2/2)vertical bar v(xixj)vertical bar(2) is an element of L-1(Omega) are established. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 30 条
  • [1] Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
  • [2] Regularity results for parabolic systems related to a class of non-Newtonian fluids
    Acerbi, E
    Mingione, G
    Seregin, GA
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (01): : 25 - 60
  • [3] Regularity results for a class of functionals with non-standard growth
    Acerbi, E
    Mingione, G
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) : 121 - 140
  • [4] Alkhutov YA., 2011, J Math Sci, V179, P347, DOI [10.1007/s10958-011-0599-9, DOI 10.1007/S10958-011-0599-9]
  • [5] [Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
  • [6] [Anonymous], 2015, ATLANTIS STUDIES DIF, DOI DOI 10.2991/978-94-6239-112-3
  • [7] Higher regularity of solutions of singular parabolic equations with variable nonlinearity
    Antontsev, S.
    Shmarev, S.
    [J]. APPLICABLE ANALYSIS, 2019, 98 (1-2) : 310 - 331
  • [8] ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY
    Antontsev, S.
    Shmarev, S.
    [J]. PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 355 - 399
  • [9] Global higher regularity of solutions to singular p(x, t)-parabolic equations
    Antontsev, Stanislav
    Kuznetsov, Ivan
    Shmarev, Sergey
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 238 - 263
  • [10] Beirao H., 2014, P ST PETERSBURG MATH, V232, P1, DOI [10.1090/trans2/232/01, DOI 10.1090/TRANS2/232/01]