On 3D MHD equations with regularity in one directional derivative of the velocity

被引:1
作者
Liu, Qiao [1 ]
机构
[1] Hunan Normal Univ, Key Lab High Performance Comp & Stochast Informat, Minist Educ China, Coll Math & Stat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
3D MHD equations; Regularity criterion; Anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS; WEAK SOLUTIONS; MAGNETOHYDRODYNAMICS EQUATIONS; GLOBAL REGULARITY; WELL-POSEDNESS; CRITERIA; HYDRODYNAMICS; SINGULARITIES; INEQUALITIES; VORTICITY;
D O I
10.1016/j.camwa.2018.08.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work establishes a new regularity criterion for the 3D incompressible magneto hydrodynamical (MHD) equations in terms of one directional derivative of the velocity (i.e., partial derivative(3)u) on framework of the anisotropic Lebesgue spaces. More precisely, it is proved that if partial derivative(3)u satisfies integral(T)(0) parallel to vertical bar vertical bar partial derivative(3)u(tau)vertical bar vertical bar L-x3(alpha)parallel to L-x1x2(beta q) d tau < +infinity, where 2/q + 1/alpha + 2/beta = k is an element of [1, 3/2] and 3/k < alpha <= beta <= 1/k-1, for some T > 0, then the corresponding solution (u, b) to the 3D MHD equations is regular on (0, T) x R-3. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2375 / 2383
页数:9
相关论文
共 50 条
  • [31] Regularity criteria for the 3D MHD equations involving partial components
    Jia, Xuanji
    Zhou, Yong
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (01) : 410 - 418
  • [32] New regularity criteria for the 3D Hall-MHD equations
    Alghamdi, Ahmad Mohammad
    Gala, Sadek
    Ragusa, Maria Alessandra
    [J]. ANNALES POLONICI MATHEMATICI, 2018, 121 (01) : 7 - 20
  • [33] A Regularity Criterion in Terms of Pressure for the 3D Viscous MHD Equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    Zhang, Zujin
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (04) : 1677 - 1690
  • [34] A NEW REGULARITY CRITERION FOR THE 3D MHD EQUATIONS IN R3
    Gala, Sadek
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 973 - 980
  • [35] A new regularity criterion for the 3D incompressible MHD equations in terms of one component of the gradient of pressure
    Jia, Xuanji
    Zhou, Yong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (01) : 345 - 350
  • [36] THE 3D BOUSSINESQ EQUATIONS WITH REGULARITY IN THE HORIZONTAL COMPONENT OF THE VELOCITY
    Liu, Qiao
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 649 - 660
  • [37] A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space
    Agarwal, Ravi P.
    Gala, Sadek
    Ragusa, Maria Alessandra
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (03):
  • [38] A logarithmically improved regularity criterion for the MHD equations in terms of one directional derivative of the pressure
    Benbernou, Samia
    Ragusa, Maria Alessandra
    Terbeche, Mekki
    [J]. APPLICABLE ANALYSIS, 2017, 96 (12) : 2140 - 2148
  • [39] The local regularity conditions for the Navier-Stokes equations via one directional derivative of the velocity
    Guo, Zhengguang
    Kucera, Petr
    Skalak, Zdenek
    [J]. LITHUANIAN MATHEMATICAL JOURNAL, 2022, 62 (03) : 333 - 348
  • [40] A New Regularity Criterion for the 3D MHD Equations Involving Partial Components
    Chen, Xiaochun
    Guo, Zhengguang
    Zhu, Mingxuan
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2014, 134 (01) : 161 - 171