Photophysical properties and fluorescence lifetime imaging of exfoliated near-infrared fluorescent silicate nanosheets

被引:14
|
作者
Selvaggio, Gabriele [1 ,2 ]
Weitzel, Milan [2 ]
Oleksiievets, Nazar [3 ]
Oswald, Tabea A. [4 ]
Nissler, Robert [1 ,2 ]
Mey, Ingo [4 ]
Karius, Volker [5 ]
Enderlein, Joerg [3 ,6 ]
Tsukanov, Roman [3 ]
Kruss, Sebastian [1 ,2 ,7 ]
机构
[1] Bochum Univ, Phys Chem 2, D-44801 Bochum, Germany
[2] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany
[3] Univ Gottingen, Inst Phys 3, D-37077 Gottingen, Germany
[4] Univ Gottingen, Inst Organ & Biomol Chem, D-37077 Gottingen, Germany
[5] Univ Gottingen, Geosci Ctr, Dept Sedimentol & Envimnmental Geol, D-37077 Gottingen, Germany
[6] Univ Gottingen, Cluster Excellence Multiscale Bioimaging Mol Mach, Gottingen, Germany
[7] Fraunhofer Inst Microelect Circuits & Syst, D-47057 Duisburg, Germany
来源
NANOSCALE ADVANCES | 2021年 / 3卷 / 15期
关键词
EGYPTIAN BLUE; 2-DIMENSIONAL MATERIALS; CARBON NANOTUBES; PIGMENTS; WINDOW;
D O I
10.1039/d1na00238d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The layered silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit as bulk materials bright and stable fluorescence in the near-infrared (NIR), which is of high interest for (bio)photonics due to minimal scattering, absorption and phototoxicity in this spectral range. So far the optical properties of nanosheets (NS) of these silicates are poorly understood. Here, we exfoliate them into monodisperse nanosheets, report their physicochemical properties and use them for (bio)photonics. The approach uses ball milling followed by tip sonication and centrifugation steps to exfoliate the silicates into NS with lateral size and thickness down to approximate to 16-27 nm and 1-4 nm, respectively. They emit at approximate to 927 nm (EB-NS), 953 nm (HB-NS) and 924 nm (HP-NS), and single NS can be imaged in the NIR. The fluorescence lifetimes decrease from approximate to 30-100 mu s (bulk) to 17 mu s (EB-NS), 8 mu s (HB-NS) and 7 mu s (HP-NS), thus enabling lifetime-encoded multicolor imaging both on the microscopic and the macroscopic scale. Finally, remote imaging through tissue phantoms reveals the potential for bioimaging. In summary, we report a procedure to gain monodisperse NIR fluorescent silicate nanosheets, determine their size-dependent photophysical properties and showcase the potential for NIR photonics.
引用
收藏
页码:4541 / 4553
页数:13
相关论文
共 50 条
  • [41] Near-infrared fluorescent protein and bioluminescence-based probes for high-resolution in vivo optical imaging
    Tiwari, Dhermendra K.
    Tiwari, Manisha
    Jin, Takashi
    MATERIALS ADVANCES, 2020, 1 (05): : 967 - 987
  • [42] Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins
    Zhao, Haowen
    Zastrow, Melissa L.
    BIOCHEMISTRY, 2022, 61 (07) : 494 - 504
  • [43] Ratiometric near infrared fluorescence imaging of dopamine with 1D and 2D nanomaterials
    Hill, Bjoern F.
    Mohr, Jennifer M.
    Sandvoss, Isabelle K.
    Gretz, Juliana
    Galonska, Phillip
    Schnitzler, Lena
    Erpenbeck, Luise
    Kruss, Sebastian
    NANOSCALE, 2024, 16 (39) : 18534 - 18544
  • [44] Methods for detecting host genetic modifiers of tumor vascular function using dynamic near-infrared fluorescence imaging
    Jagtap, Jaidip
    Sharma, Gayatri
    Parchur, Abdul K.
    Gogineni, Venkateswara
    Bergom, Carmen
    White, Sarah
    Flister, Michael J.
    Joshi, Amit
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (02): : 543 - 556
  • [45] Near-Infrared Fluorescence from In-Plane-Aromatic Cycloparaphenylene Dications
    Masumoto, Yui
    Toriumi, Naoyuki
    Muranaka, Atsuya
    Kayahara, Eiichi
    Yamago, Shigeru
    Uchiyama, Masanobu
    JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 122 (23) : 5162 - 5167
  • [46] Enhancement of aqueous stability and fluorescence brightness of indocyanine green using small calix[4]arene micelles for near-infrared fluorescence imaging
    Jin, Takashi
    Tsuboi, Setsuko
    Komatsuzaki, Akihito
    Imamura, Yukio
    Muranaka, Yoshinori
    Sakata, Takao
    Yasuda, Hidehiro
    MEDCHEMCOMM, 2016, 7 (04) : 623 - 631
  • [47] Near-infrared absorbing amphiphilic semiconducting polymers for photoacoustic imaging
    Cui, Dong
    Xie, Chen
    Lyu, Yan
    Zhen, Xu
    Pu, Kanyi
    JOURNAL OF MATERIALS CHEMISTRY B, 2017, 5 (23) : 4406 - 4409
  • [48] Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore
    Herwig, Lukas
    Rice, Austin J.
    Bedbrook, Claire N.
    Zhang, Ruijie K.
    Lignell, Antti
    Cahn, Jackson K. B.
    Renata, Hans
    Dodani, Sheel C.
    Cho, Inha
    Cai, Long
    Gradinaru, Viviana
    Arnold, Frances H.
    CELL CHEMICAL BIOLOGY, 2017, 24 (03): : 415 - 425
  • [49] Modeling of cancer photothermal therapy using near-infrared radiation and functionalized graphene nanosheets
    Wang, Yijuan
    Leng, Sha
    Huang, Jigang
    Shu, Mingyang
    Papavassiliou, Dimitrios V.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2020, 36 (01)
  • [50] Near-Infrared II Dye-Protein Complex for Biomedical Imaging and Imaging-Guided Photothermal Therapy
    Zeng, Xiaodong
    Xiao, Yuling
    Lin, Jiacheng
    Li, Shanshan
    Zhou, Hui
    Nong, Jinxia
    Xu, Guozhen
    Wang, Hongbo
    Xu, Fuchun
    Wu, Junzhu
    Deng, Zixin
    Hong, Xuechuan
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (18)