Solid-State Lithium-Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode

被引:112
|
作者
Li, Meirong [1 ]
Frerichs, Joop Enno [2 ]
Kolek, Martin [1 ]
Sun, Wei [1 ]
Zhou, Dong [1 ]
Huang, Chen Jui [3 ]
Hwang, Bing Joe [3 ]
Hansen, Michael Ryan [2 ]
Winter, Martin [1 ,4 ]
Bieker, Peter [1 ,2 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Munster, Inst Phys Chem, Corrensstr 30, D-48149 Munster, Germany
[3] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[4] Forschungszentrum Julich, Helmholtz Inst Munster HI MS, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
polymer; ceramic composite electrolytes; solid-state lithium-sulfur batteries; sulfurized polyacrylonitrile cathodes; POLYMER ELECTROLYTES; LI/S BATTERY; METAL; PERFORMANCE; CONDUCTIVITY; STABILITY; MECHANISM; ION;
D O I
10.1002/adfm.201910123
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium-sulfur battery (SSLSB) is attractive due to its potential for providing high energy density. However, the cell chemistry of SSLSB still faces challenges such as sluggish electrochemical kinetics and prominent "chemomechanical" failure. Herein, a high-performance SSLSB is demonstrated by using the thio-LiSICON/polymer composite electrolyte in combination with sulfurized polyacrylonitrile (S/PAN) cathode. Thio-LiSICON/polymer composite electrolyte, which processes high ionic conductivity and wettability, is fabricated to enhance the interfacial contact and the performance of lithium metal anodes. S/PAN is utilized due to its unique electrochemical characteristics: electrochemical and structural studies combined with nuclear magnetic resonance spectroscopy and electron paramagnetic resonance characterizations reveal the charge/discharge mechanism of S/PAN, which is the radical-mediated redox reaction within the sulfur grafted conjugated polymer framework. This characteristic of S/PAN can support alleviating the volume change in the cathode and maintaining fast redox kinetics. The assembled SSLSB full cell exhibits excellent rate performance with 1183 mAh g(-1) at 0.2 C and 719 mAh g(-1) at 0.5 C, respectively, and can accomplish 50 cycles at 0.1 C with the capacity retention of 588 mAh g(-1). The superior performance of the SSLSB cell rationalizes the construction concept and leads to considerations for the innovative design of SSLSB.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Particles in composite polymer electrolyte for solid-state lithium batteries: A review
    Meng, Nan
    Zhu, Xiaogang
    Lian, Fang
    PARTICUOLOGY, 2022, 60 : 14 - 36
  • [32] Increasing Electrical Conductivity of Free-Standing Sulfurized Polyacrylonitrile Cathode for Lithium-Sulfur Batteries
    Kim, Huihun
    Choe, Seon-Hwa
    Sadan, Milan K.
    Kim, Changhyeon
    Cho, Kwon-Koo
    Kim, Ki-Won
    Ahn, Jou-Hyeon
    Lee, Younki
    Ahn, Hyo-Jun
    SCIENCE OF ADVANCED MATERIALS, 2020, 12 (10) : 1441 - 1445
  • [33] Composite Cathode Structure and Binder for High Performance Lithium-Sulfur Battery
    Wu Ying-Lei
    Yang Jun
    Wang Jiu-Lin
    Yin Li-Chao
    Nuli Yan-Na
    ACTA PHYSICO-CHIMICA SINICA, 2010, 26 (02) : 283 - 290
  • [34] Development of composite solid polymer electrolyte for solid-state lithium battery: Incorporating LLZTO in PVDF-HFP/LiTFSI
    Yadav, Poonam
    Hosen, Md Sazzad
    Dammala, Pradeep Kumar
    Ivanchenko, Pavlo
    Van Mierlo, Joeri
    Berecibar, Maitane
    SOLID STATE IONICS, 2023, 399
  • [35] Interdigitated cathode-electrolyte architectural design for fast-charging lithium metal battery with lithium oxyhalide solid-state electrolyte
    Numan-Al-Mobin, Abu Md
    Schmidt, Ben
    Lannerd, Armand
    Viste, Mark
    Qiao, Quinn
    Smirnova, Alevtina
    MATERIALS ADVANCES, 2022, 3 (24): : 8947 - 8957
  • [36] Solid-State Polymer Electrolyte Solves the Transfer of Lithium Ions between the Solid-Solid Interface of the Electrode and the Electrolyte in Lithium-Sulfur and Lithium-Ion Batteries
    Shan, Yuhang
    Li, Libo
    Yang, Xueying
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (05): : 5101 - 5112
  • [37] Sulfur double locked by a macro-structural cathode and a solid polymer electrolyte for lithium-sulfur batteries
    Zhang, Cheng
    Lin, Yue
    Liu, Jin
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) : 10760 - 10766
  • [38] Solid-state electrolytes for solid-state lithium-sulfur batteries: Comparisons, advances and prospects
    Liang, Xin
    Wang, Lulu
    Wu, Xiaolong
    Feng, Xuyong
    Wu, Qiujie
    Sun, Yi
    Xiang, Hongfa
    Wang, Jiazhao
    JOURNAL OF ENERGY CHEMISTRY, 2022, 73 : 370 - 386
  • [39] Towards a Safe Lithium-Sulfur Battery with a Flame-Inhibiting Electrolyte and a Sulfur-Based Composite Cathode
    Wang, Jiulin
    Lin, Fengjiao
    Jia, Hao
    Yang, Jun
    Monroe, Charles W.
    NuLi, Yanna
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (38) : 10099 - 10104
  • [40] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)