Solid-State Lithium-Sulfur Battery Enabled by Thio-LiSICON/Polymer Composite Electrolyte and Sulfurized Polyacrylonitrile Cathode

被引:112
|
作者
Li, Meirong [1 ]
Frerichs, Joop Enno [2 ]
Kolek, Martin [1 ]
Sun, Wei [1 ]
Zhou, Dong [1 ]
Huang, Chen Jui [3 ]
Hwang, Bing Joe [3 ]
Hansen, Michael Ryan [2 ]
Winter, Martin [1 ,4 ]
Bieker, Peter [1 ,2 ]
机构
[1] Univ Munster, Inst Phys Chem, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Munster, Inst Phys Chem, Corrensstr 30, D-48149 Munster, Germany
[3] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan
[4] Forschungszentrum Julich, Helmholtz Inst Munster HI MS, IEK 12, Corrensstr 46, D-48149 Munster, Germany
关键词
polymer; ceramic composite electrolytes; solid-state lithium-sulfur batteries; sulfurized polyacrylonitrile cathodes; POLYMER ELECTROLYTES; LI/S BATTERY; METAL; PERFORMANCE; CONDUCTIVITY; STABILITY; MECHANISM; ION;
D O I
10.1002/adfm.201910123
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state lithium-sulfur battery (SSLSB) is attractive due to its potential for providing high energy density. However, the cell chemistry of SSLSB still faces challenges such as sluggish electrochemical kinetics and prominent "chemomechanical" failure. Herein, a high-performance SSLSB is demonstrated by using the thio-LiSICON/polymer composite electrolyte in combination with sulfurized polyacrylonitrile (S/PAN) cathode. Thio-LiSICON/polymer composite electrolyte, which processes high ionic conductivity and wettability, is fabricated to enhance the interfacial contact and the performance of lithium metal anodes. S/PAN is utilized due to its unique electrochemical characteristics: electrochemical and structural studies combined with nuclear magnetic resonance spectroscopy and electron paramagnetic resonance characterizations reveal the charge/discharge mechanism of S/PAN, which is the radical-mediated redox reaction within the sulfur grafted conjugated polymer framework. This characteristic of S/PAN can support alleviating the volume change in the cathode and maintaining fast redox kinetics. The assembled SSLSB full cell exhibits excellent rate performance with 1183 mAh g(-1) at 0.2 C and 719 mAh g(-1) at 0.5 C, respectively, and can accomplish 50 cycles at 0.1 C with the capacity retention of 588 mAh g(-1). The superior performance of the SSLSB cell rationalizes the construction concept and leads to considerations for the innovative design of SSLSB.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Review on composite polymer electrolyte using PVDF-HFP for solid-state lithium-ion battery
    Halder, Bhargabi
    Mohamed, Mohamed Gamal
    Kuo, Shiao-Wei
    Elumalai, Perumal
    MATERIALS TODAY CHEMISTRY, 2024, 36
  • [22] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Chen, Long
    Qiu, Xiaoming
    Bai, Zhiming
    Fan, Li-Zhen
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 (52): : 210 - 217
  • [23] A Solid-State Battery Cathode with a Polymer Composite Electrolyte and Low Tortuosity Microstructure by Directional Freezing and Polymerization
    Huang, Chun
    Leung, Chu Lun Alex
    Leung, Puiki
    Grant, Patrick S.
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [24] Flexible, solid-state, fiber-network-reinforced composite solid electrolyte for long lifespan solidlithium-sulfurized polyacrylonitrile battery
    Luo, Shiqiang
    Zhao, Enyou
    Gu, Yixuan
    Saito, Nagahiro
    Zhang, Zhengxi
    Yang, Li
    Hirano, Shin-ichi
    NANO RESEARCH, 2022, 15 (04) : 3290 - 3298
  • [25] Lithium-Sulfur Battery Cathode Enabled by Lithium-Nitrile Interaction
    Guo, Juchen
    Yang, Zichao
    Yu, Yingchao
    Abruna, Hector D.
    Archer, Lynden A.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) : 763 - 767
  • [26] A novel lithium/sulfur battery based on sulfur/graphene nanosheet composite cathode and gel polymer electrolyte
    Zhang, Yongguang
    Zhao, Yan
    Bakenov, Zhumabay
    NANOSCALE RESEARCH LETTERS, 2014, 9 : 1 - 7
  • [27] New Insights into the N-S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium-Sulfur Batteries
    Huang, Chen-Jui
    Lin, Kuan-Yu
    Hsieh, Yi-Chen
    Su, Wei-Nien
    Wang, Chia-Hsin
    Brunklaus, Gunther
    Winter, Martin
    Jiang, Jyh-Chiang
    Hwang, Bing Joe
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (12) : 14230 - 14238
  • [28] Sulfurized polyacrylonitrile cathodes with electrochemical and structural tuning for high capacity all-solid-state lithium-sulfur batteries
    Sun, Zhen
    Hu, Yaqi
    Qin, Furong
    Lv, Na
    Li, Bingqin
    Jiang, Liangxing
    Zhang, Zongliang
    Liu, Fangyang
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (21): : 5603 - 5614
  • [29] MOF/Poly(Ethylene Oxide) Composite Polymer Electrolyte for Solid-state Lithium Battery
    Liang Fengqing
    Wen Zhaoyin
    JOURNAL OF INORGANIC MATERIALS, 2021, 36 (03) : 332 - 336
  • [30] Polymer Electrolyte/Anode Interface in Solid-State Lithium Battery
    Chen, Long
    Huang, Shaobo
    Qiu, Jingyi
    Zhang, Hao
    Cao, Gaoping
    PROGRESS IN CHEMISTRY, 2021, 33 (08) : 1378 - 1389