Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes

被引:221
作者
Bernal, AN [1 ]
Sánchez, M [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dpto Geometria & Topol, E-18071 Granada, Spain
关键词
Neural Network; Statistical Physic; Complex System; Nonlinear Dynamics; Quantum Computing;
D O I
10.1007/s00220-005-1346-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The folk questions in Lorentzian Geometry which concerns the smoothness of time functions and slicings by Cauchy hypersurfaces, are solved by giving simple proofs of: ( a) any globally hyperbolic spacetime ( M, g) admits a smooth time function T whose levels are spacelike Cauchy hyperfurfaces and, thus, also a smooth global splitting M = R x S, g = - beta( T, x) dT(2) + (g) over bar T, ( b) if a spacetime M admits a ( continuous) time function t then it admits a smooth ( time) function T with timelike gradient del T on all M.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 7 条
[1]  
BEEM JK, 1996, MONOGRAPHS TXB PURE, V202
[2]   On smooth Cauchy hypersurfaces and Geroch's splitting theorem [J].
Bernal, AN ;
Sánchez, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (03) :461-470
[3]   DOMAIN OF DEPENDENCE [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) :437-&
[4]   EXISTENCE OF COSMIC TIME FUNCTIONS [J].
HAWKING, SW .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 308 (1494) :433-&
[5]  
HAWKING SW, 1973, CAMBRIDGE MONOGRAPHS, V1
[6]   GENERAL RELATIVITY AND COSMOLOGY [J].
SACHS, RK ;
WU, H .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (06) :1101-1164
[7]  
SANCHEZ M, 2004, IN PRESS MATEMATICA