Progress of infrared guided-wave nanophotonic sensors and devices

被引:94
作者
Ma, Yiming [1 ,2 ,3 ]
Dong, Bowei [1 ,2 ,4 ]
Lee, Chengkuo [1 ,2 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, CISM, Singapore 117608, Singapore
[3] NUS Suzhou Res Inst NUSRI, Suzhou Ind Pk, Suzhou 215123, Peoples R China
[4] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn NGS, Singapore 117456, Singapore
基金
新加坡国家研究基金会;
关键词
Nanophotonics; Biochemical; physical sensors; Guided-wave; Infrared; MACH-ZEHNDER INTERFEROMETER; LABEL-FREE BIOSENSOR; INTEGRATED SILICON PHOTONICS; RING-RESONATOR; HIGH-SENSITIVITY; SLOW-LIGHT; MICRORING-RESONATOR; TEMPERATURE SENSOR; REFRACTIVE-INDEX; OPTICAL SENSOR;
D O I
10.1186/s40580-020-00222-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanophotonics, manipulating light-matter interactions at the nanoscale, is an appealing technology for diversified biochemical and physical sensing applications. Guided-wave nanophotonics paves the way to miniaturize the sensors and realize on-chip integration of various photonic components, so as to realize chip-scale sensing systems for the future realization of the Internet of Things which requires the deployment of numerous sensor nodes. Starting from the popular CMOS-compatible silicon nanophotonics in the infrared, many infrared guided-wave nanophotonic sensors have been developed, showing the advantages of high sensitivity, low limit of detection, low crosstalk, strong detection multiplexing capability, immunity to electromagnetic interference, small footprint and low cost. In this review, we provide an overview of the recent progress of research on infrared guided-wave nanophotonic sensors. The sensor configurations, sensing mechanisms, sensing performances, performance improvement strategies, and system integrations are described. Future development directions are also proposed to overcome current technological obstacles toward industrialization.
引用
收藏
页数:34
相关论文
共 260 条
[1]   Narrow Band Total Absorber at Near-Infrared Wavelengths Using Monolayer Graphene and Sub-Wavelength Grating Based on Critical Coupling [J].
Akhavan, Ali ;
Abdolhosseini, Saeed ;
Ghafoorifard, Hassan ;
Habibiyan, Hamidreza .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (23) :5593-5599
[2]  
[Anonymous], SILICON PHOTONICS
[3]   Observation of Near-Field Dipolar Interactions Involved in a Metal Nanoparticle Chain Waveguide [J].
Apuzzo, A. ;
Fevrier, M. ;
Salas-Montiel, R. ;
Bruyant, A. ;
Chelnokov, A. ;
Lerondel, G. ;
Dagens, B. ;
Blaize, S. .
NANO LETTERS, 2013, 13 (03) :1000-1006
[4]   Plasmonic Antennas Hybridized with Dielectric Waveguides [J].
Arango, Felipe Bernal ;
Kwadrin, Andrej ;
Koenderink, A. Femius .
ACS NANO, 2012, 6 (11) :10156-10167
[5]   Heavy water detection using ultra-high-Q microcavities [J].
Armani, Andrea M. ;
Vahala, Kerry J. .
OPTICS LETTERS, 2006, 31 (12) :1896-1898
[6]   Slow light in photonic crystals [J].
Baba, Toshihiko .
NATURE PHOTONICS, 2008, 2 (08) :465-473
[7]   Slot-waveguide biochemical sensor [J].
Barrios, Carlos A. ;
Gylfason, Kristinn B. ;
Sanchez, Benito ;
Griol, Amadeu ;
Sohlstroem, H. ;
Holgado, M. ;
Casquel, R. .
OPTICS LETTERS, 2007, 32 (21) :3080-3082
[8]   A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips [J].
Carlborg, C. F. ;
Gylfason, K. B. ;
Kazmierczak, A. ;
Dortu, F. ;
Banuls Polo, M. J. ;
Maquieira Catala, A. ;
Kresbach, G. M. ;
Sohlstrom, H. ;
Moh, T. ;
Vivien, L. ;
Popplewell, J. ;
Ronan, G. ;
Barrios, C. A. ;
Stemme, G. ;
van der Wijngaart, W. .
LAB ON A CHIP, 2010, 10 (03) :281-290
[9]   Real-time and low-cost sensing technique based on photonic bandgap structures [J].
Castello, J. G. ;
Toccafondo, V. ;
Perez-Millan, P. ;
Losilla, N. S. ;
Cruz, J. L. ;
Andres, M. V. ;
Garcia-Ruperez, J. .
OPTICS LETTERS, 2011, 36 (14) :2707-2709
[10]   Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [J].
Chae, Jungseok ;
An, Sangmin ;
Ramer, Georg ;
Stavila, Vitalie ;
Holland, Glenn ;
Yoon, Yohan ;
Talin, A. Alec ;
Allendorf, Mark ;
Aksyuk, Vladimir A. ;
Centrone, Andrea .
NANO LETTERS, 2017, 17 (09) :5587-5594