Dichotomy in the NRT Gene Families of Dicots and Grass Species

被引:132
作者
Plett, Darren [1 ]
Toubia, John [1 ]
Garnett, Trevor [1 ]
Tester, Mark [1 ]
Kaiser, Brent N. [2 ]
Baumann, Ute [1 ]
机构
[1] Univ Adelaide, Waite Res Inst, Australian Ctr Plant Funct Genom, Adelaide, SA, Australia
[2] Univ Adelaide, Waite Res Inst, Sch Agr Food & Wine, Adelaide, SA, Australia
基金
澳大利亚研究理事会;
关键词
AFFINITY NITRATE TRANSPORTER; NITROGEN-USE EFFICIENCY; ARABIDOPSIS NITRATE; RICE GENOME; FUNCTIONAL-CHARACTERIZATION; DRAFT SEQUENCE; UPTAKE SYSTEM; CHL1; CLONING; EXPRESSION;
D O I
10.1371/journal.pone.0015289
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A large proportion of the nitrate (NO32-) acquired by plants from soil is actively transported via members of the NRT families of NO32- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2) family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH) approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium). We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO32- transporters and NO32- transport in grass crop species.
引用
收藏
页数:12
相关论文
共 43 条
[1]   Characterization of the Arabidopsis Nitrate Transporter NRT1.6 Reveals a Role of Nitrate in Early Embryo Development [J].
Almagro, Anabel ;
Lin, Shan Hua ;
Tsay, Yi Fang .
PLANT CELL, 2008, 20 (12) :3289-3299
[2]   Protein database searches using compositionally adjusted substitution matrices [J].
Altschul, SF ;
Wootton, JC ;
Gertz, EM ;
Agarwala, R ;
Morgulis, A ;
Schäffer, AA ;
Yu, YK .
FEBS JOURNAL, 2005, 272 (20) :5101-5109
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]   Predicting function: From genes to genomes and back [J].
Bork, P ;
Dandekar, T ;
Diaz-Lazcoz, Y ;
Eisenhaber, F ;
Huynen, M ;
Yuan, YP .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 283 (04) :707-725
[5]   Weighted neighbor joining: A likelihood-based approach to distance-based phylogeny reconstruction [J].
Bruno, WJ ;
Socci, ND ;
Halpern, AL .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (01) :189-197
[6]   Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes [J].
Chen, Feng ;
Mackey, Aaron J. ;
Vermunt, Jeroen K. ;
Roos, David S. .
PLOS ONE, 2007, 2 (04)
[7]   Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development [J].
Chiu, CC ;
Lin, CS ;
Hsia, AP ;
Su, RC ;
Lin, HL ;
Tsay, YF .
PLANT AND CELL PHYSIOLOGY, 2004, 45 (09) :1139-1148
[8]   The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds [J].
Chopin, Franck ;
Orsel, Mathilde ;
Dorbe, Marie-France ;
Chardon, Fabien ;
Truong, Hoai-Nam ;
Miller, Anthony J. ;
Krapp, Anne ;
Daniel-Vedele, Francoise .
PLANT CELL, 2007, 19 (05) :1590-1602
[9]   The Arabidopsis Nitrate Transporter NRT1.7, Expressed in Phloem, Is Responsible for Source-to-Sink Remobilization of Nitrate [J].
Fan, Shu-Chun ;
Lin, Choun-Sea ;
Hsu, Po-Kai ;
Lin, Shan-Hua ;
Tsay, Yi-Fang .
PLANT CELL, 2009, 21 (09) :2750-2761
[10]   A draft sequence of the rice genome (Oryza sativa L. ssp japonica) [J].
Goff, SA ;
Ricke, D ;
Lan, TH ;
Presting, G ;
Wang, RL ;
Dunn, M ;
Glazebrook, J ;
Sessions, A ;
Oeller, P ;
Varma, H ;
Hadley, D ;
Hutchinson, D ;
Martin, C ;
Katagiri, F ;
Lange, BM ;
Moughamer, T ;
Xia, Y ;
Budworth, P ;
Zhong, JP ;
Miguel, T ;
Paszkowski, U ;
Zhang, SP ;
Colbert, M ;
Sun, WL ;
Chen, LL ;
Cooper, B ;
Park, S ;
Wood, TC ;
Mao, L ;
Quail, P ;
Wing, R ;
Dean, R ;
Yu, YS ;
Zharkikh, A ;
Shen, R ;
Sahasrabudhe, S ;
Thomas, A ;
Cannings, R ;
Gutin, A ;
Pruss, D ;
Reid, J ;
Tavtigian, S ;
Mitchell, J ;
Eldredge, G ;
Scholl, T ;
Miller, RM ;
Bhatnagar, S ;
Adey, N ;
Rubano, T ;
Tusneem, N .
SCIENCE, 2002, 296 (5565) :92-100